
Harrisburg University of Science and Technology Harrisburg University of Science and Technology

Digital Commons at Harrisburg University Digital Commons at Harrisburg University

Dissertations and Theses Computer and Information Sciences, Graduate
(CSMS)

Fall 12-14-2022

Cloud Container Security’ Next Move Cloud Container Security’ Next Move

Vishakha Sadhwani
vsadhwani@my.harrisburgu.edu

Follow this and additional works at: https://digitalcommons.harrisburgu.edu/csms_dandt

 Part of the Computer Sciences Commons, and the Risk Analysis Commons

Recommended Citation Recommended Citation
Sadhwani, V. (2022). Cloud Container Security’ Next Move. Retrieved from
https://digitalcommons.harrisburgu.edu/csms_dandt/3

This Thesis is brought to you for free and open access by the Computer and Information Sciences, Graduate
(CSMS) at Digital Commons at Harrisburg University. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of Digital Commons at Harrisburg University. For more information, please
contact library@harrisburgu.edu.

https://digitalcommons.harrisburgu.edu/
https://digitalcommons.harrisburgu.edu/csms_dandt
https://digitalcommons.harrisburgu.edu/csms
https://digitalcommons.harrisburgu.edu/csms
https://digitalcommons.harrisburgu.edu/csms_dandt?utm_source=digitalcommons.harrisburgu.edu%2Fcsms_dandt%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.harrisburgu.edu%2Fcsms_dandt%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1199?utm_source=digitalcommons.harrisburgu.edu%2Fcsms_dandt%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.harrisburgu.edu/csms_dandt/3?utm_source=digitalcommons.harrisburgu.edu%2Fcsms_dandt%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@harrisburgu.edu

 Cloud Container Security’ Next Move:

Defining Architecture and Implementing Automation for Container

Workflows with a Secure Infrastructure on Cloud.

by

Vishakha Sadhwani

Thesis submitted to the Faculty of the Graduate School of the

in fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

Supervised by: Mike Shahine, Ph.D.

[2023]

Table of Contents

Abstract ..3

Keywords..3

Chapter 1...4

1.1 Introduction...5

1.2 Methodologies...6

 1.2.1 Continuous Development..6

 1.2.2 Continuous Integration..7

 1.2.3 Continuous Delivery..7

Chapter 2...8

2.1 Annotated Bibliography and Related Work..8-13

 Chapter 3..14

 3.1 Fusing DevOps and Container Security..14

 3.1.1 Components and Controls...15

 3.1.2 Requirements Mappings..16-17

 3.1.3 Architecture Workflows...17-23

 3.1.4 Use-Case Design & Test Cases..23-30

Chapter 4...31

 4.1 Results & Conclusion...31

 4.2 Future Works..32

REFERENCES..33-34

Abstract

In the last few years, it is apparent to cybersecurity experts everywhere that the proverbial

container tech genie is out of the bottle, and has been widely embraced across multiple

organizations. To achieve the flexibility of building and deploying applications anywhere and

everywhere, cloud native environments have gained great momentum and made the development

lifecycle simpler than ever. However, container environments brings with them a range of

cybersecurity issues that includes images, containers, hosts, runtimes, registries, and orchestration

platforms, which needs the necessity to focus on investing in securing your container stack.

According to this report[1], released by cloud-native security provider Aqua Security on

June 21’, there are multiple ways attackers can breach a company's container infrastructure and

the image supply chain. They also estimated a rise of 600% in the second half of 2020 as compared

to the previous year. These attacks generally involves passive scanning methods to access servers

that run Docker and Kubernetes platform. Per another report[2], the focus should not only be

around securing the tools that are cloud provided, but should also include securing the distributed

components involved in the software supply chain throughout the development and deployment

process.

Keywords: Cloud, Cybersecurity, Containers, Orchestrations, Kubernetes, Infrastructure, Software

Supply chain

https://www.darkreading.com/cloud/software-container-supply-chain-sees-spike-in-attacks
https://www.darkreading.com/cloud/what-does-it-take-to-secure-containers-

Chapter 1

1. Introduction

 Cloud providers managing the container services provide many ways to help secure your

workloads, but does this involve protecting container workloads in different layers of stack? This

stack includes different contents such as container image, the container runtime, the cluster

network, and access to the data deployed in the workloads across clouds. These multiple

component workflows add to the complexity of managing, securing and troubleshooting

applications.

Below are some challenges that are identified with remote environments and services, which are

further mapped to few categories in the next section:

● Secure source code stored locally, employees development environments, and in version

control management systems.

● Build and test code on a secure infrastructure, with proper authentication and authorization

to access resources.

● Scanning of container images and their runtimes for existing vulnerabilities before

deploying to production environments. In addition, implement a mechanism to attest

images before moving it to next stage in the pipeline.

● Managing container access and securing communications between microservices.

● Ensure applications running in the clusters across clouds are in compliance with the

company policies, restricting user access to particular namespaces with proper

authentication and authorization in place.

● Logging and monitoring application on a regular basis to prevent any malicious usage of

cluster resources.

1.1. Problem Statement

To overcome these challenges, putting a standard security and configurations controls in place is

critical. At the same time, this process should be automated to achieve the scale in the DevOps

lifecycle. The idea of this research is to focus on obtaining a set of processes that address the above

objectives; deep dive on securing container deployments and enforcing policies and controls for

cloud native environments.

This study will lay down a set of rules that can be followed to secure the DevOps workflows for

Kubernetes applications, and will cover the most critical security and reliability requirements

without causing any delay in the releases and ensure operational independence. This would further

detect and prevent attackers who attempt to use Kubernetes to breach the systems, by picking on

the vulnerabilities.

This research would involve implementation of continuous security measures on the below given

three phases of the application development lifecycle:

● Continuous Development

● Continuous Integration

● Continuous Delivery

Each of these above phases needs to be analyzed thoroughly in an organization, as a single miss

on the configuration could lead to a severe data breach that can be expensive and damaging to the

business. Moreover, with Kubernetes applications – management and maintenance of deployments

can be crucial, hence it is very necessary to have a full proof security posture.

To start with, let’s focus on each of the above development lifecycle phases and understand the

key areas where security strategy can be applied. These best practices and deployment patterns can

be a key to establish safeguards before moving code to the production services.

1.2 Methodologies

1.2.1 Continuous Development: This methodology comes from the agile practices, where rather

than making changes in bulk, small changes to the software are delivered to the customers, as soon

as it is deployed and tested. This can reap great benefits for companies, as the software is

continuously improved , and proper feedback is received on a timely basis. In order to apply a

security strategy to this phase, the developers should be empowered to secure code, the moment

they write it. This could be as simple as, making sure their workstation is not left unattended. The

paper would further detail around these best practices and how they can be implemented to ensure

the security during this stage of process.

1.2.2 Continuous Integration(CI): It refers to the set of tools and processes that run on a

continuous* basis to ensure that changes to a codebase are proper, safe, and accurate. A CI System

often involves several components:

● A Continuous Build (CB) component to ensure that code changes do not break

dependencies.

● A Continuous Testing (CT) component to ensure code changes do not alter the expected

behavior of those dependencies.

● A Continuous Deployment (CD) component to ensure code changes can be pushed to

production.

In order to ensure that risks are detected and managed in earlier stages of these processes before it

gets more complex, it is very important to bake security into each of these layers. The prevention

could lie anywhere between scanning container images for addressing vulnerabilities that can be

introduced during the build stage, identifying runtime dependencies that can cause breaches to the

system, to encrypting secrets of the source control systems.

1.2.3 Continuous Delivery: It is the ability to do automated promotion of code through

deployment pipeline with quality gates to production, should the business so choose. The quality

gates involves automated testing and monitoring. It automates a process of verified and secure

deployment of the workload into designated environment. This stages includes integrating security

operation processes. For example: RBAC rules validation in Kubernetes deployment can enable

restricted access to the other resources of the application, hence ensuring only authorized users can

perform actions to access resources.

To summarize, the above listed core stages of the container infrastructure pipeline needs to be

implemented keeping security in mind, rather than managing security as an extended process. In

this way, identifying and responding to attacks becomes easier as there are safeguards applied to

each stage of the process. This is more critical for cloud native containerized applications as the

attack surface is wider, and a small misconfiguration can open the gates for the attackers to find a

way into the systems.

Chapter 2

2.1 Annotated Bibliography

In the present day, security challenges that are tied to the containers and their orchestration

is a major concern, and if security is not included as an inherent process for their application

lifecycle, organizations would not only put their businesses at risk, but also jeopardize their

customer’s business. On the other side of the spectrum, according to a survey 52% of developers[6]

believe that security limits the speed of innovation and time to market. Thus there is a need to have

a unified approach to this problem that would empower business by combining both the objectives

- that is securing applications and increase agility to adopt new changes in the system.

Kumar, Rakesh, and Rinkaj Goyal. "Modeling continuous security: A conceptual model for

automated DevSecOps using open-source software over cloud (ADOC)." Computers & Security

97 (2020): 101967. [ScienceDirect]

The authors modelled a continuous security tool to address the above mentioned issue. In the

research paper, a conceptual model for automated DevSecOps using open-source software over

cloud)[3] was developed that incorporated development, security and operation activities as an

automation workflow and it leverages the Open Source Software(OSS) on cloud to implement this

model, without compromising the time to market factor of the business. It also referred to a set of

open source Infrastructure as code(IAC) tools to achieve the automation that was proposed for the

https://www.darkreading.com/application-security/strained-relationships-hinder-devsecops-innovation
https://www.sciencedirect.com/science/article/pii/S0167404820302406
https://www.sciencedirect.com/science/article/pii/S0167404820302406

security controls. However, applying a set of security controls using an automation tool can be

challenging, and not all of the companies who are managing and maintaining container

infrastructure can adapt to the degree of automation that these cloud native technologies can offer.

The paper further discussed on benefits of going with the open source technology stack, to make

it cloud agnostic. That said, there is no ‘one size fits all’ solution but instead a combination of OSS

tools that needs to be adapted by organizations to fulfil the objective of achieving this automation.

However, this research focused on a traditional application stack, and not the microservices

oriented approach, thus integrating such tools with additional operational overhead becomes

difficult to adopt.

A. Sojan, R. Rajan and P. Kuvaja, "Monitoring solution for cloud-native DevSecOps," 2021

IEEE 6th International Conference on Smart Cloud (SmartCloud), 2021, pp. 125-131, doi:

10.1109/SmartCloud52277.2021.00029. Retrieved from https://www.ieeexplore.ieee.org. To

address the automation for DevSecOps for microservice architectural style, the authors derived a

monitoring solutions for Cloud DevSecOps, where the model covers both infrastructure and the

application level automation of the DevOps practices. This study addressed two problems – [a]

Deploying a repeatable solution that can monitor cloud-native infrastructure and [b] Automation

capability of the solution which is triggered by events as alerts. This introduced the idea of

continuous monitoring, which is a measure to improve the overall infrastructure health, as well

as application health. This solution considers infrastructure monitoring as the heart of the

automation tool, however it was identified that there are limitations of the monitoring capability

on the containerized workloads, container to container communications, service to service

https://www.ieeexplore.ieee.org/
https://ieeexplore.ieee.org/document/9627212

communications etc. and thus unavailability of such DevSecOps tools and solutions for container

applications made it more difficult to adopt for few organizations.

M. Zaydi and B. Nassereddine, "Devsecops practices for an agile and secure it service

management", Journal of Management Information and Decision Sciences, vol. 23, no. 2, pp. 1-

16, 2020. To conquer the challenges mentioned above, Security Principles for DevOps and

cloud[7] provided a great overview of using cloud transformation to balance security activities

and how organizations can keep up with the rapidly changing environments(Containers as a

Service(CAAS), Serverless, etc.). The study included a baseline of Security and DevOps

principles that can be applied to software lifecycle for applications running on any cloud, and

any technology stack, hence ensuring no vendor lock-in limitation for this proposal. This

research paper is an extension of this study[7], as it focusses on implementing the cloud and

security principles to each phase of the containerized application lifecycle. Retrieved from

https://www.compact.nl/pdf/C-2020-1-Sprengers.pdf

S. Kamthania, "A Novel Deep Learning RBM Based Algorithm for Securing Containers," 2019

 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE),

2019, pp. 1-7, doi: 10.1109/WIECON-ECE48653.2019.9019985.

Retrieved from https://www.ieeexplore.ieee.org

With the advancement in technology, the procedures to detect vulnerabilities at an early stage are

becoming more prominent. One such mechanism was discussed by the authors of this paper, where

https://www.compact.nl/pdf/C-2020-1-Sprengers.pdf
https://www.compact.nl/pdf/C-2020-1-Sprengers.pdf
https://www.compact.nl/pdf/C-2020-1-Sprengers.pdf
https://www.ieeexplore.ieee.org/

machine learning algorithms can be leveraged to assess the container workloads. This research

elaborates on how the containers can be configured at an earlier stage of development and align

with the security reviews. With Boltzman Machine learning algorithm, container behavioral stats

can be extracted during run-time, and the NIST security rules can be automatically applied

wherever there are any security violations. In the end it creates a profile for the container that can

be reviewed by the security engineers to evaluate the deployments.

O. Díaz, M. Muñoz and J. Mejía, "Responsive infrastructure with cybersecurity for automated

high availability DevSecOps processes," 2019 8th International Conference On Software Process

Improvement (CIMPS), 2019, pp. 1-9, doi: 10.1109/CIMPS49236.2019.9082439. Retrieved from

https://www.ieeexplore.ieee.org

The authors from Mexico discusses around the importance of responsive infrastructure and

argues that these strategies should be incorporated within the processes of deployments as well.

They mentioned how such processes can be automated and organizations can build highly

available and fault tolerant systems using microservices. This is one such approach where risk

management strategies were embedded in each stage of deployment for microservices.

D. B. Bose, A. Rahman and S. I. Shamim, "‘Under-reported’ Security Defects in Kubernetes

Manifests," 2021 IEEE/ACM 2nd International Workshop on Engineering and Cybersecurity of

Critical Systems (EnCyCriS), 2021, pp. 9-12, doi: 10.1109/EnCyCriS52570.2021.00009.

Retrieved from https://www.ieeexplore.ieee.org

https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/

Kubernetes researchers D. B. Bose, A. Rahman and S. I. Shamim conducted a broad

examination of all the security defects that have been reported for Kubernetes projects and

provided a list of observations from those defects. Kubernetes as an orchestrating platform is

widely used and security defects can be injected within any component of this platform. The

authors pursued this objective and detected the frequency of such defects and venues where they

are mostly found, whether in the configuration manifests, repositories etc. They also highlighted

the unresolved defects that could be responsible for a larger data breach.

This research is crucial to the topic discussed as it gives insights to the vulnerabilities that

are often neglected and can cause a significant amount of damage at alarming rates.

M. S. Islam Shamim, F. Ahamed Bhuiyan and A. Rahman, "XI Commandments of Kubernetes

Security: A Systematization of Knowledge Related to Kubernetes Security Practices," 2020 IEEE

Secure Development (SecDev), 2020, pp. 58-64, doi: 10.1109/SecDev45635.2020.00025.

Retrieved from https://www.ieeexplore.ieee.org

Based on the Tesla security breach incident that occurred in 2018 associated with the Kubernetes

deployments, the authors of this research report developed a set of security practices ~ 11 in total,

to help practitioners protect their application’s supply chain process. They found that the practices

revolve around three pillars: Role based access control, Kubernetes version management and

implementing network and pod security policies to prevent any malicious access to the resources,

Tanya Janca, "Securing Modern Applications and Systems," in Alice and Bob Learn Application

https://www.ieeexplore.ieee.org/

Security, Wiley, 2021, pp.167-191. Retrieved from https://www.ieeexplore.ieee.org

Application Security researcher Tanya provides a high-level overview of security tooling for

different components, processes, and workflows through this research paper. The author reviewed

studies of various security tactics and how they apply to each component of the software

development lifecycle. The security of APIs is also a key part of the discussion as it acts as a

medium of communication between two software and is critical in application security.

J. Mahboob and J. Coffman, "A Kubernetes CI/CD Pipeline with Asylo as a Trusted Execution

Environment Abstraction Framework," 2021 IEEE 11th Annual Computing and Communication

Workshop and Conference (CCWC), 2021, pp. 0529-0535, doi:

10.1109/CCWC51732.2021.9376148. Retrieved from https://www.ieeexplore.ieee.org

The authors assert that security of the finished artifact should not be the only asset to protect in a

DevOps environment. The artifacts that travel through the source till the final deployment targets

should be monitored and protected from any types of data breach. The paper revolves around four

pillars of ensuring security, which starts with the Continuous Integration and Continuous

deployment processes should have support for strong separation of duties, next the entire execution

of security best practices should be automated, third the orchestration engine should be supported

in different ecosystems/cloud providers and finally the deployment artifacts should be secured

using a certain dedicated framework/tool for trusted environments.

Chris Binnie; Rory McCune, "DevSecOps Tooling," in Cloud Native Security , Wiley, 2021,

https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/

pp.103-104. Retrieved from https://www.ieeexplore.ieee.org

The authors from this research paper provided directions towards achieving a secure infrastructure

for cloud containers, along with hands-on examples of how to mitigate attacks in certain areas of

concern and isolating systems to prevent these threats affecting the tightly coupled systems. This

also involved configuring various DevSecOps tools and building an automated ecosystem around

your container application and the orchestrator as well.

The research series is relevant to my paper as it focusses on providing a guide to secure your cloud

native technology stack at all layers of the application lifecycle. In addition, it also helps in

identifying gaps in the security of current infrastructure components that could be addressed using

security policies.

Chapter 3

3.1 Fusing DevOps and Container Security

This section will give an overview of the DevSecOps model applied to containerized applications

in cloud and how organizations can invest in automation throughout the infrastructure and

application lifecycle. The proposed solution focusses on addressing the below given high level

requirements:

(A) Reducing the attack surface during the development phase of the application lifecycle,

without failing to keep up with the business. This would include adapting a managed

service approach for collaboration and version control.

(B) Adapt automation to speed up integration of code using cloud-native and kube-native

solutions, by embedding security in the build and test infrastructure.

https://www.ieeexplore.ieee.org/

(C) Automate release pipelines to deploy container workloads securely, this would built upon

the principle of Infrastructure as a code(IAAC).

The above given specifications can be implemented using a broad ecosystem of container and

kube-native solutions available, that varies from tools and different frameworks, which can

integrate with your application. This model will work around building a DevSecOps pipeline that

ensures the security processes are intact, when automating tasks for various stages and processes.

The requirements listed above might not be complete and can accommodate additional use cases,

however for the current scope of this project, this would be the base of the model for implementing

continuous security and the listed requirements will be addressed in the next section.

3.1.1 Components and Controls

As two thirds of businesses are unhappy with the release speed, the goal of this research is to

increase speed delivery, while maintaining high service security. This approach would integrate

security guidelines in all stages of your Kubernetes deployment pipeline. The proposed solution

would cover workflow for building, pushing and deploying your container application, using tools

and services that would be cloud-agnostic, as well as help how you can modernize your software

delivery solution.

The goal of this framework is to provide a check-list of standards, best practices and controls to

prevent tampering, improve integrity, secure workloads and infrastructure in your projects,

businesses or enterprises. It is how you get from safe enough to being as resilient as possible, at

any link in the chain.

The below architecture reflects a simple container deployment pipeline with the different personas

handlings different components of the infrastructure.

Now, risks can be introduced at any stage of this pipeline by any actor if proper controls and

measures are not applied to the workflow. The proposed framework would concentrate on

addressing the below risks:

● Image Risks: Untrusted images may introduce vulnerabilities and malware into your

applications

● Registry Risks: Unsecured registries can allow unauthorized access or the distribution of

malicious images.

● Orchestrator Risks: Misconfigured orchestrators can create broad attack surfaces and

allow unauthorized cluster control.

● Container Risks: Poorly isolated containers can enable privilege escalation and lateral

movement within your environment.

● Host OS Risks: Vulnerabilities in the host OS could compromise the security of all

running containers.

3.1.2 Requirements Mappings

The reference architecture can be extended to other cloud or on-premises. Products and services

adopted in the reference architecture can be substituted.

Requirement

No.

Product or Services Requirements

Description

Available Products

Req 001 Source Repository Store application and

infrastructure source

code

Github, GitLab,

BitBucket,

CodeCommit

Req 002

Build Tool Orchestrate the

continuous

integration, such as

tests, application &

container builds, and

IAC deployments

CloudBuild, Jenkins,

GitLab, CircleCI,

Zuul, AWS

CloudBuild

Req 003

Deployment Pipeline Manage the

application and

container

deployments

Spinnaker, GitLab,

Jenkins,

CloudDeploy,

CodeDeploy

Req 004

Authorization & Attestation Sign the builds and

containers to ensure

only trusted

containers are

deployed to the

Kubernetes clusters

Kritis + Grafeas +

Kubernetes

Admission Control

Req 005

Container & Artifact Registry Store build artifacts,

containers and

perform vulnerability

scan for the

containers

JFrog Artifactory,

Nexus, CodeArtifact,

Azure Container

Registry

Req 006

Kubernetes Orchestration Automate and scale

managed Kubernetes

Platform

GKE, EKS, AKS,

Kubernetes on

Vmware, Kubernetes

on Bare Metal

Servers

Req 007

Logging and Monitoring Implement Control

plane logging and

monitoring, including

workload logs, audit

and trace logs

Cloud Operations

Suite, CloudWatch,

CloudTrail, Azure

Cloud Monitoring,

Prometheus, Datadog

To adopt the approach for shift left security to secure your supply chain, the

following use-cases should be followed while managing and maintaining the

software delivery pipeline:

Use-Case Design

Use Case

No.

Use-Cases Description Architecture

Component

001 Provenance - Available All builds are

orchestrated in a

build server, and

container images are

signed by an attestor

who has permission

to

approve/disapprove

images - only then

the image will be

deployed to the

Kubernetes clusters.

Authorization &

Attestation Tools

such as Graeas,

Sigstore(Cosign),

JFrog Xray, Binary

Authorization

002. Common - Security Leverage SIEM tools

in the market to

identify and prevent

Vulnerability Scan

Tools

threats at an early

stage.

003. Common - Access All the actions and

changes made to the

pipeline in the

reference architecture

are logged. It is

recommended that

users implement

further monitoring &

alerting leverage of

the collected logs.

Logging &

Monitoring Tools

004. Common - Superusers It is recommended

locking down the

console access in the

production or near-

production

environments and

deploy any changes

via IaC(Infrastructure

as Code) and

Terraform/other

IAAC tools

orchestrate the IaC

via the pipeline.

3.1.3 Architectural Workflow

Based on the functional requirements that were discussed in the previous section, the following

diagram depicts a secure DevOps tools chain.

At the highest level, we have the following components in the basic architecture:

1. Source Repository and development environment: This is the hub where application

code is stored. This version-control system should have restricted user access, with only

authorized users having permissions to push or merge to the production application code.

In order to prevent users from storing security keys in a repository, the version-control

system should be able to detect service account credentials, private keys including RSA,

DSA and PGP. Developers writing code on local systems can also introduce risks, and have

created challenges in securing local systems. Thus a cloud native Integrated development

environment can not only help securing the systems, but also increase developer’s

productivity.

2. Build tools and Continuous integration: The code is build, tested and packaged using a

continuous integration tool, and it is one of the most critical component of the DevOps tool

chain. Containerized application code can have various build requirements with respect to

runtime, packages, additional plugins and other connectors. In addition, the tools needs to

access the source code securely, if it runs in a private network, and push the packaged

container image to the registry. This requires the build tool have proper permissions to

access the resources, and would need to run in a private network.

3. Artifact Registry: This component is responsible for storing, and managing the build

artifacts such as our container images, Gradle or Maven packages. To embed security into

this component, container analysis operations should be performed on the artifacts to detect

vulnerability.

4. Continuous Deployment: To automate delivery to the targets such as our Kubernetes

cluster, a cloud-managed delivery tool can perform deployments in a sequence of

actions, including approvals or denies to the production environments. It also

involving rollbacks, and have auditing feature embedded with the managed service

5. Runtime Environment and Orchestration: Within the Kubernetes security, the

orchestration platform is split into the below focus areas:

a. Identity and Policy Enforcement

● OPA (Open Policy Agent): A powerful policy engine that can be used to

enforce complex security rules across your Kubernetes cluster. Use cases

include fine-grained RBAC, pod security policies, and more.

● Kubernetes RBAC: Built-in role-based access control system. Integrate

with your preferred identity provider (LDAP, OIDC, etc.)

● Commercial Tools: Many cloud security solutions (Prisma Cloud, Sysdig,

etc.) offer Kubernetes-specific policy enforcement and auditing features.

b. Kubernetes Hardening

● CIS Benchmarks: Provide detailed hardening recommendations for

Kubernetes.

● kubescape: Open-source tool that scans your cluster against CIS and other

security benchmarks.

● kube-bench: Another popular open-source tool for checking cluster

configuration against CIS benchmarks.

c. Image Inventory and Vulnerability Scanning

● Container Registry Scanning: GCP's Vulnerability Scanning, AWS ECR

scanning, etc. These are often a good starting point.

● Clair, Trivy: Open-source image scanners with extensive CVE databases.

● Snyk, Anchore: Commercial tools offering more in-depth analysis and

remediation guidance.

d. Data Protection and Secrets Management

● Kubernetes Secrets: Built-in, but use with caution. Limited encryption

options at rest.

● Vault (HashiCorp): Popular secrets management solution, offers dynamic

secrets and strong encryption.

● CyberArk: Commercial solution with a focus on privileged access and

secrets management across environments.

e. Metadata Concealment

● NetworkPolicy (Kubernetes): Limit pod-to-pod traffic using network

policies, reducing the attack surface.

● Service Meshes (Istio, Linkerd): Can provide fine-grained traffic control,

encryption, and potentially metadata filtering.

Based on the above security onboarding checklist and requirements, these structured tasks can be

followed to deploy your infrastructure and workloads securely. A managed service provider can

offer all the features listed above in an automated way.

3.1.4 Design Test Cases

Test Case Number: TC1

Revision: Rev. 1

Author: Vishakha Sadhwani

Date Conducted: Dec 01, 2022

Test Conductor: Vishakha Sadhwani

Customer Representative: Vishakha Sadhwani

Description: This Test Case will test the functionality of attesting container images automatically

to verify and validate certain specifications that are approved before deploying the image to the

target Kubernetes cluster. The related use case for this Test case is UC-001

Pre-Test Setup:

1. Ensure the pipeline is configured with the deployment components, such as source and

destination repositories, build server, deploy service and target staging and production kubernetes

clusters.

2. A sample application is deployed to the Kubernetes cluster.

Use Case: 001, 002, 003 Flow: Main Flow

 User Action Expected Results P/F Comments

A developer commits

changes to the main

branch

An authorized user has

successfully pushed code to

the main branch

P Req 001

Build triggers on commit

to branch and image is

built

The tool started building the

code with secure packages,

runtimes, and unit tests.

P

Req 002

The image is pushed to

registry

Verify new image is

available in the artifact

registry

P

The image is scanned by

vulnerability scanner

The tool scanned the image

for vulnerabilities, and none

was found

P

Req 003, 004, 005

Detects non-critical

vulnerabilities

The tool scanned the image

for vulnerabilities, and none

was found

P

Req 004, 005

An authorized user

validates the results and

ensures the image is safe

to deploy to the

The image was verified by

the authorized QA (Quality

Assurance) team

P

environment through

attestations

An authorized user

updates the deployment

manifest with the new

image and deploys it to

production cluster

The app was updated with

the new image by an

authorized cluster admin user

P

Req 006

Post-conditions:

The cluster was updated

with the latest changes

made to code, and the

application container's

health is being monitored.

Test Case Number: TC2

Revision: Rev. 1

Author: Vishakha Sadhwani

Date Conducted: Dec 01, 2022

Test Conductor: Vishakha Sadhwani

Customer Representative: Vishakha Sadhwani

Description: This Test Case will test if only authenticated and authorized users are accessing the

resources in the pipeline, including Kubernetes cluster resources.

The related use case for this Test case is UC-001, 002

Pre-Test Setup:

1. Ensure the pipeline is configured with the deployment components, such as source and

destination repositories, build server, deploy service and target staging and production Kubernetes

clusters.

2. A sample application is deployed to the Kubernetes cluster.

3. Logging and Monitoring has been enabled to track the errors.

Use Case: 001, 002, 003 Flow: Main Flow

 User Action Expected Results P/F Comment

A user signs in to

cloud console to

access the project

resources

Login page is displayed for the cloud

console

P

User needs to login

using their web

identity(userinfo.ema

il) to be authenticated

User enters their email and password in

the login page to access the console

 P

The user has

successfully logged

in to the cloud

console

Verify user can view the resources

based on the permissions associated to

their user identity

P

User can access

kubernetes cluster

resources by

retrieving an OAuth

access token

Retrieve kubernetes cluster credentials

for a specific user

P Req 006, 007

A user is authorized

to perform cluster

actions through

RBAC (Role based

access control)

RBAC roles are established with fine-

grained permissions and associated with

the user

P Req 006

A user can

run/manage

workloads in

authorized kubernetes

namespaces

Users can run workloads on the

authorized clusters and access allocated

resources.

P Req 006, 007

Post-conditions:

User’s activity can be

audited through

logging and

monitoring, hence

any unauthorized

access can back

tracked and admins

are alerted to act on.

Test Case Number: TC3

Revision: Rev. 1

Author: Vishakha Sadhwani

Date Conducted: Dec 01, 2022

Test Conductor: Vishakha Sadhwani

Customer Representative: Vishakha Sadhwani

Description: This Test Case will test the functionality of the pipeline towards untrusted images

that have been detected through the scanner and how the activity is logged and remediated.

The related use case for this Test case is UC-001

Pre-Test Setup:

1. Ensure the pipeline is configured with the deployment components, such as source and

destination repositories, build server, deploy service and target staging and production kubernetes

clusters.

2. A sample application is deployed to the kubernetes cluster.

3. Logging and Monitoring has been enabled to track the errors.

Use Case: 001, 002, 003

Flow: Main Flow

User Action Expected Results P/

F

Comment

A developer commits

changes to the main

branch

An authorized user has successfully

pushed code to the main branch

P Req 001

Build triggers on

commit to branch and

image is built

The tool started building the code with

secure packages, runtimes, and unit

tests.

 P Req 002

The image is pushed

to registry

Verify new image is available in the

artifact registry

P

The image is scanned

by vulnerability

scanner

The tool scanned the image for

vulnerabilities, and critical

vulnerabilities were found

P Req 003, 004, 005

Detects critical

vulnerabilities

The tool scanned the image for

vulnerabilities, and the user ensured that

the image cannot be trusted

P

An authorized user

validates the results

and ensures the

image is safe to

deploy to the

environment through

attestations

The vulnerabilities detected by the

scanner was logged for audit purposes

and the authorized engineer can ensure

to remediate those with proper testing

P

An authorized user

cancels the

deployment and roll

back the source code

to previous version

The authorization tool verified that the

app did not pass it unit tests and hence

is not built using a specific set of

systems, thus the code change would

not progress to production systems

F Req 001

Post-conditions:

The application

update did not pass

the required tests and

includes some critical

vulnerabilities; hence

this change will not

progress until these

introduced

vulnerabilities are

fixed.

Test Case Number: TC4

Revision: Rev. 1

Author: Vishakha Sadhwani

Date Conducted: Dec 01, 2022

Test Conductor: Vishakha Sadhwani

Customer Representative: Vishakha Sadhwani

Description: This Test Case will test if all the resources that are provisioned using an

(Infrastructure as a code) tool, are managed, and maintained by the IAAC (Infrastructure as a code)

such as Terraform

The related use case for this Test case is UC-004

Pre-Test Setup:

1. The supported resources are planned as the infrastructure components and formulated per the

IAAC tool - terraform3. Logging and Monitoring has been enabled to track the errors.

Use Case: 001, 002, 003

Flow: Main Flow

 User Action Expected Results P/F Comment

User prepares a script

to provision all the

infrastructure

resources through

terraform

An admin user creates a script using the

resource specifications

P

User validates the

script to confirm if

the terraform tool is

implementing

Through terraform cli, user validates the

script and the expected resource

configurations

 P

resources per the

security best practices

User executes the

script and resources

are deployed

Through terraform cli, user applies the

terraform script to deploy to specific

cloud provider

 P

To track the resource

status, terraform tool

stores the state of

each resource locally

The user verifies and validates the state

of the resources are stored locally

 P

User creates a backup

of the state file to a

remote source such

cloud storage buckets

The user verifies the backup files are

stored in cloud storage bucket

 P Req 007

User updates the

resources through the

terraform script

User makes changes to the

infrastructure through the script

P Req 007

Post-conditions:

Users are only

allowed to update

infrastructure through

the IAAC tool and

terraform tool has the

required permissions

to perform all the

actions to the cloud

resources.

Chapter 4
4.1 Results and Conclusion

The current pipeline performs the following operations:

● Applies the security checks in different layers of the stack

o Source Repository

o Build service

o Authorization and Attestation Service

o Kubernetes Platform

o Audit Logging & Monitoring

● Leveraged a terraform script that builds the entire environment for this setup

o The terraform script is currently supporting a CI/CD pipeline implementation only.

The steps automated the provisioning process, and solves the below problems:

▪ Easy instantiation of resources and builds a dependency tree

▪ Tracks the resource statuses in state files, so in case if any resource is

accidently deleted by any user, the IAC tool would trigger an event to

rebuild the resource

▪ Ease to deploy in multiple environments such as Dev, QA, UAT, Production

etc

▪ Ease in destroying/cleaning up resources all at once

4.2 Future Work
● The current setup supports implementation only on concepts, hence there can future work

done on creating scripts for cloud platforms that will deploy these security baselines in an

automated way.

● In this project, I have not focused on the cost of services involved in implementing the

security checklist. This can be a good next step to dive into, along with developing a cost

optimized setup.

● There are a lot of open-source SIEM tools currently available in the market, for future

work, an integration with an incidence management tool can be particularly useful.

References:

1. Kumar, Rakesh, and Rinkaj Goyal. "Modeling continuous security: A conceptual model

for automated DevSecOps using open-source software over cloud (ADOC)." Computers

& Security 97 (2020): 101967. [ScienceDirect]

2. A. Sojan, R. Rajan and P. Kuvaja, "Monitoring solution for cloud-native DevSecOps,"

2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), 2021, pp. 125-

131, doi: 10.1109/SmartCloud52277.2021.00029.

3. M. Zaydi and B. Nassereddine, "Devsecops practices for an agile and secure it service

management", Journal of Management Information and Decision Sciences, vol. 23, no. 2,

pp. 1-16, 2020.

4. S. Kamthania, "A Novel Deep Learning RBM Based Algorithm for Securing

Containers," 2019 IEEE International WIE Conference on Electrical and Computer

Engineering (WIECON-ECE), 2019, pp. 1-7, doi: 10.1109/WIECON-

ECE48653.2019.9019985. Retrieved from https://www.ieeexplore.ieee.org

5. O. Díaz, M. Muñoz and J. Mejía, "Responsive infrastructure with cybersecurity for

automated high availability DevSecOps processes," 2019 8th International Conference

On Software Process Improvement (CIMPS), 2019, pp. 1-9, doi:

10.1109/CIMPS49236.2019.9082439. Retrieved from https://www.ieeexplore.ieee.org

6. D. B. Bose, A. Rahman and S. I. Shamim, "‘Under-reported’ Security Defects in

Kubernetes Manifests," 2021 IEEE/ACM 2nd International Workshop on Engineering

and Cybersecurity of Critical Systems (EnCyCriS), 2021, pp. 9-12, doi:

10.1109/EnCyCriS52570.2021.00009. Retrieved from https://www.ieeexplore.ieee.org

7. M. S. Islam Shamim, F. Ahamed Bhuiyan and A. Rahman, "XI Commandments of

Kubernetes Security: A Systematization of Knowledge Related to Kubernetes Security

Practices," 2020 IEEE Secure Development (SecDev), 2020, pp. 58-64, doi:

10.1109/SecDev45635.2020.00025. Retrieved from https://www.ieeexplore.ieee.org

8. Tanya Janca, "Securing Modern Applications and Systems," in Alice and Bob Learn

Application Security, Wiley, 2021, pp.167-191. Retrieved from

https://www.ieeexplore.ieee.org

https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/

9. J. Mahboob and J. Coffman, "A Kubernetes CI/CD Pipeline with Asylo as a Trusted

Execution Environment Abstraction Framework," 2021 IEEE 11th Annual Computing

and Communication Workshop and Conference (CCWC), 2021, pp. 0529-0535, doi:

10.1109/CCWC51732.2021.9376148. Retrieved from https://www.ieeexplore.ieee.org

10. Chris Binnie; Rory McCune, "DevSecOps Tooling," in Cloud Native Security , Wiley,

2021, pp.103-104. Retrieved from https://www.ieeexplore.ieee.org

11. Dark Reading Staff - Strained Relationships Hinder DevSecOps Innovation

12. W. van der Houven, Security principles for devops and cloud

13. Kirsten Newcomer Why DevSecOps Is Critical for Containers and Kubernetes

14. Robert Lemos Software-Container Supply Chain Sees Spike in Attacks

https://www.ieeexplore.ieee.org/
https://www.ieeexplore.ieee.org/
https://www.darkreading.com/application-security/strained-relationships-hinder-devsecops-innovation
https://www.compact.nl/pdf/C-2020-1-Sprengers.pdf
https://www.darkreading.com/cloud/why-devsecops-is-critical-for-containers-and-kubernetes
https://www.darkreading.com/cloud/software-container-supply-chain-sees-spike-in-attacks

	Cloud Container Security’ Next Move
	Recommended Citation

	tmp.1710721779.pdf.4Xoer

