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Abstract 

Traffic crashes account for most of casualties and injuries worldwide, and there has been 

growing concerns and studies regarding the contributing factors of traffic crashes. There are 

many factors causing or related to an occurrence of traffic crash, e.g., land use, traffic flow 

conditions, driver behavior and weather condition. This paper studied the spatial and temporal 

distribution of crashes on highway and developed real-time prediction models for crash 

occurrence. Traffic flow data, weather data, and crash data from multiple data sources were 

collected and processed to develop the model. Multiple machine learning models, such as SVM 

model and Decision Tree model, were used as the candidate models. It was found that weather, 

crash time, and traffic flow shortly prior to the crash occurrence are critical impacting factors for 

real-time crash prediction. The candidate models have low to moderate sensitivity to predict the 

crash occurrences due to limited sample size. To use the models in a traffic operations 

environment, a prediction tool with interactive map could be developed to proactively monitor 

crash hot spots, and prepare staffing and resources for the potential crash occurrences.  

Keywords:  Spatial-temporal Analysis, Traffic Flow, Machine Learning Models, Crash Prediction 
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Introduction 

As a result of rapid increase of vehicle ownership and traffic demand, traffic crashes 

account for most casualties and injuries worldwide, especially for those of young people between 

15 and 29 years (Jia, Khadka, & Kim, 2018). Annually, about 1.35 million people per year lost 

their lives due to traffic crashes, and 20 to 50 million people are injured in traffic crashes (World 

Health Organization, 2018). The occurrence of traffic crashes seems random, because oftentimes 

their causes are complicated, and are related to multiple factors, such as bad driving behavior 

(e.g., alcohol impacted, distraction from texting and drowsy driver), severe weather, icy road 

surface, low visibility, or a combination of these factors.  Which factors contribute most to the 

traffic crashes?  How can we reduce the risk of traffic crashes and improve road safety?  

To address these questions, comprehensive and quantitative/qualitative analysis with 

multiple data sources is needed.  Therefore, data mining and statistical models are critical to 

quantify the contribution of these factors to traffic crashes in the studies of traffic crashes and 

safety. The objective of this study is to study the spatial and temporal distribution patterns of 

traffic crashes, if any, and their correlations to potential impacting factors. With this knowledge, 

effective countermeasures, such as street lighting improvement, speed warning systems, and road 

geometry improvement, can be carried out to lower or eliminate the risk of crashes, or reduce the 

severity of crashes, at specific locations. Intuitively, more traffic crashes are expected during 

severe weather like thunderstorm or snowstorm, and more crashes usually occur during 

weekdays than weekend due to higher traffic volumes.  

Previous studies (Chung, Abdel-Aty, & Lee, 2018; Aghajani, Dezfoulian, Arjroody, & 

Rezaei, 2017) have demonstrated that weather and traffic volumes are two major factors 

contributing to traffic crash occurrence. Other contributing factors found in the studies (Rolison, 
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Regev, Moutari, & Feeney, 2018) include human factors (drowsiness, distraction etc.), pavement 

surface conditions, and visibility. In the study of Jia et al. (2018), the spatial distribution of traffic 

crashes is found to be highly related to land use properties, especially the land use of public 

services, such as hospitals and banks.  Many studies have focused on the relationship between 

crash hot spots and different contributing factors from mid-term or long-term perspective. 

Limited studies look into the prediction of crash occurrence in short-term period or real-time. 

This study is trying to contribute to this gap.   

In this study, a highway corridor in Michigan is selected and  multiple data sources 

pertaining to the study corridor, containing weather data, traffic crash data, traffic volume data, 

and corresponding geographical data etc., were used to  analyze the spatial-temporal distributions 

of crashes, and develop models for predicting the probability of crash occurrence. Geographical 

Information System (GIS) is a powerful tool to process, visualize and analyze geographically 

related data in this study. The final product of the study is a short-term, or even real-time 

prediction tool, which is based on the prediction models developed in the study. The prediction 

tool can predict probabilities of traffic crashes cross the study road network/corridor at different 

time of day, which can be displayed as a dynamic heat map.  

Literature Review 

An intuitive question arising after the occurrence of a traffic crash would be: what is the 

cause of the crash? This remains to be a big topic in the research area of traffic safety and 

accident prevention. Many studies found it highly related to drivers’ characteristics and behavior. 

For example, Rolison et al. (2018) conducted a comprehensive survey study on significant 

contributing factors of driver’s behavior to traffic crashes in England, UK. It was found that 

impaired driving (drugs or alcohol), speeding, inexperience, distraction, medical condition, and 
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poor eyesight, are the six most significant factors to the crashes in the hypothetical scenarios in 

the survey.   

Besides drivers’ behavior, environmental and geographical factors such as weather, 

visibility, land use properties, and road layout are also related to traffic crashes. A crash hot spot 

is identified as locations, where crashes, especially crashes with injuries or casualties, are more 

likely to occur than its neighboring area (Hakkert & Mahalel, 1978).  To identify crash hot spots 

and the contribution of environmental and geographical factors, spatial analysis is conducted in 

many studies.  For example, Anderson’s (2009) studied the identification of traffic crash hot 

spots using clustering method, and in addition, associates the hot spots with environment and 

land use data to further understand the complexities of traffic crashes and their spatial 

dependence. Jia et al. (2018) conducted spatial analysis of traffic crashes in Suzhou Industrial 

Park (SIP) with datasets of clustered point of interest (POI) information. The results show that 

both spatial lag model (SLM) and spatial error model (SEM) outperform the Ordinary least 

squares (OLS) model, and the SEM has the best performance in terms of coefficient of 

correlation and p-value. Vaz, Techranchi, and Cusimano (2017) specifically studied the spatial 

distribution of traffic crashes in the greater Toronto area (GTA).  The results of the study show 

that there are statistically significant clustering patterns in the traffic crashes of vehicles with 

pedestrians, vehicles with trains, and vehicles with vehicles. The hot spots of crashes are located 

at areas with higher population density or where railroad crosses roadways. For the factors 

contributing to the number of crashes, the results of the GWR model show that the percentage of 

seniors and education level of residence were found to have the strongest correlation. Chung et 

al. 's (2018) study focused on fatal traffic crashes, and analyzed the spatial relationship between 

adverse weather, specifically in the format of weather station coverage, and fatal crashes. The 
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scope of the study covers all states of America, which was divided into nine climate regions in 

the study, while most studies in the past cover only a part of the states. The study concludes that 

adverse weather conditions are significantly related to the increase of fatal crashes, and that most 

weather-related fatal crashes occurred during rainy, snowy, or foggy days. In addition, traffic 

volume, in the format of vehicle miles traveled (VMT), was found to be a significant positive 

independent variable in the models, too.  

The above studies focus on identifying crash hot spots and estimating crash frequency at 

mid-term or long-term period (e.g. monthly or annually) and at macro level (e.g. county or 

nationwide). With the advance of Intelligence Transportation System (ITS) and real-time traffic 

data collection techniques, there has been increasing interest in short-term or real-time crash 

prediction at local highway corridor level. For example, Abdel-aty and Pemmanaboina (2006) 

developed a methodology to predict the probability of crashes along a freeway corridor, using 

historical weather data and ITS traffic flow data collected at loop detectors installed along the 

freeway corridor. The paper aimed at real-time crash prediction at highway corridor level. A 

matched case-control logit regression (LR) model was applied to predict the odds of a crash 

occurrence at a location associated with a loop detector station on the corridor. It was found that 

high variation in the traffic flow, in terms of traffic speed, volume and occupancy, 5-10 minutes 

prior to the crash occurrence and heavy rain weather increase the odds of crash occurrence most 

significantly and indicate crash-prone conditions. Similar results were found by Lee et al. (2002) 

that the variation in traffic speed and density is significantly related to the likelihood of crash 

occurrence, and thus are crash precursors.  

From the literature review, it has been shown that contributing factors to traffic crashes 

include severe weather, traffic flow characteristics such as traffic volume and speed, land use 
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properties, human factors, and pavement conditions etc. Many previous studies focused on the 

impacting factors of crashes, and their relationship with hot spot from regional or national level, 

for mid-term to long-term period. However, not many studies investigated the impacts of these 

factors at corridor level for a short-term period or in real time. In addition, most studies have 

used clustering method or traditional statistical models such as regression models. However, 

advanced machine learning models, such as random forest model and dynamic neural network 

(DNN) model, have not been used extensively in the field of crash analysis.  

Research Questions 

The purpose of this study is to answer the following questions: 1) can we develop a short-

term, or a real-time prediction model to detect or predict potential crashes at specific locations? 

2) which contributing factors can we use to predict crashes? 3) Can we use machine learning 

models to predict crash occurrence? It is hypothesized that 1) a crash is highly associated with 

the traffic flow in proximity to the crash locations and weather conditions when the crash occurs, 

2) the proposed machine learning models can identify the relationship between potential crashes 

and external factors such as traffic volumes and weather conditions in a short-term period and 

predict the probability of crashes at highway corridor level.  

Methodology 

Data Description and Processing 

Traffic Data. 

The traffic data for this study was collected from the radar detector stations, owned by 

Michigan Department of Transportation (DOT). The radar detectors along the highways in 

Michigan measure three parameters of traffic flow: vehicle speed in mile per hour (mph), traffic 

volume in vehicles per hour (vph) and detector occupancy rate in percent.  Detector occupancy 
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rate represents the density of traffic flow and is defined as the percentage of time a radar detector 

is occupied by vehicles within the detection interval, e.g., 30 seconds. For the study, I selected a 

9-mile-long segment on I-96 freeway in City of Wixom, Michigan as the study corridor. And I 

used traffic flow data between January 2017 and September 2019 from Michigan DOT’s traffic 

database for the study. The freeway segment has three lanes in each direction on its mainline. 

There is a total of 7 radar stations and 14 radar detectors on this segment of the freeway, each of 

which is about 1 to 2 miles apart. Appendix1 from the Appendix shows the information regarding 

radar detection station and radar detectors, including their names, directions, and crossing road. 

It can be seen from Appendix1 that there are two radar detectors at each radar detection stations, 

each detecting one direction of traffic on the freeway. The map of the study corridor and the 

locations of the radar detection stations are illustrated in Figure 1.  
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Figure 1 

Study Corridor  

 

Note. The map shows the location of the detection stations, as well as their associated weather 

stations (see Appendix 1 and Appendix 6).  

The original data were collected in 30 seconds intervals. A program developed in 

MATLAB was used to aggregate the data to a specific interval, e.g., 2 min, 5 min, or 15 min. In 

this study, 2 min interval was used to gain the highest resolution of the traffic flow. The original 

data are measured by each lane of the freeway. The MATLAB program averages the speeds and 

occupancies of all lanes to obtain the average speed and average occupancy, entitled approach 

speed and approach occupancy, respectively. The program also sums up the lane volumes to 

obtain approach traffic volume.  Then the program removes contradicting data points in the 

dataset, e.g., zero speeds but positive traffic volumes, or negative speeds but positive volumes. It 

also removes unrealistic data points, e.g., speeds higher than 120 mph, or occupancy greater than 

100%. The original datasets were collected monthly, and the MATLAB program combines 
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monthly datasets into one big dataset, using the ‘merge’ function in MATLAB. There is a total of 

76 million rows in the dataset, with a size of 1.5 gigabytes. This is the largest dataset in the study. 

Appendix 2 illustrates an excerpt of cleaned traffic data.  For simplicity, I used approach traffic 

data rather than lane-based traffic data, with the assumption that most crash events will impact at 

least one lane of traffic, and thus will impact the average traffic flow on the approach.  

 I also used the function describe() from Pandas in python to calculate the summary 

statistics, and listed it in  Appendix 3.  The statistics table shows that there are outliers in the 

traffic volume data because the maximum value of volume approach is more than 55 million 

vph, and standard deviation is 19 thousand vph. According to the highway capacity manual 

(HCM, 2010), the practical traffic volume on a single freeway lane is mostly below 2200 vph, 

and this makes a total of 6600 vph for a three-lane freeway. In addition, there are outliers in the 

occupancy data, because the mean occupancy is 1245%, and the maximum occupancy is 

65535%. Logically, the occupancy cannot exceed 100%. Therefore, the outliers in the approach 

volume and occupancy data are false data and need to be removed from the original dataset. The 

speed data statistics look reasonable with a mean speed of 70 mph, and a maximum of 120 mph.  

Therefore, a filtering was conducted in python to remove the measurements with traffic volume 

greater than 6600 vph, and occupancy greater than 100 percent. The other issue I identified in 

Appendix 3 is that there is missing data in the speed data because the count of speed data 

measurements is less than that of the other data measurements. Then I ran a summary of null data 

in python (see in Appendix 4), and there are around 419 thousand of null speed data, and the 

corresponding volume and occupancy data are all zeros. Therefore, these null speed data should 

have zero speeds, since there are no vehicles detected during these measurements. I then 

converted the null speed data (i.e. ‘NaN’ in the data) to zero speed. A summary of the cleaned 
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dataset is shown in Appendix 5. After removing the false outliers, the mean and maximum value 

of approach volume and approach occupancy are within the expected range. Meanwhile, the 

number of speed data measurements is the same as that of the other measurements.  

Weather Data. 

The historic weather data is downloaded from a third-party weather forecast data website 

named Darksky (Dark Sky Team, 2015), which provides Application Programming Interface 

(API) data feed and can be accessed through Python or R after I registered an account on it. 

Darksky contains historical and forecast weather data from weather stations worldwide. In this 

study, weather stations near the study corridor were selected. A python program was developed 

to access the API and download hourly weather data between 2017 and 2019 from Darksky. The 

hourly weather data provides information including timestamp, temperature, precipitation, 

weather conditions (e.g., clear, rain, snow, fog), wind speeds etc. The Darksky website uses the 

weather data from the closest weather stations at the nearby town or city.  Five weather stations 

of weather data were used for the study corridor, as shown in Appendix 6. The locations of these 

weather stations are illustrated in the study corridor map in Figure 1. Appendix 7 provides an 

excerpt of the weather data downloaded through the Darksky API. The datasets were 

downloaded by year and station, which makes a total of 15 data files (3 years by 5 stations).  

Crash Data. 

The crash data was obtained from Michigan State Police’s UD-10 traffic crash report 

database (MSP, 2021), which contains detailed crash information such as crash ID, timestamp of 

crash, GPS coordinates of crash locations, number of lanes impacted by the crashes, fatal or 

injury, weather conditions, number of vehicles involved, and information of involved vehicles 

etc. Appendix 8 (a), (b) and (c) show an excerpt of the crash data in three parts. 
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I applied a combination of R program and manual cleaning to clean up the crash data. 

The R program first deleted empty rows and rows with ‘NA’ values. The original crash data were 

saved as a text file, and some of the columns shifted to the neighboring columns after imported 

into R in csv format due to inconsistent spacing in the original text files. The R program filtered 

out those columns with the wrong data, and then deleted them and shifted the rest of the columns 

to the left to align the data columns. The datasets were then output to csv file again, and I 

manually checked if there were other anomalies in the datasets. I found that some crashes 

occurred on the eastbound of the freeway, however, the direction was marked as ‘West’ in the 

data table. The last two rows in Appendix 8 represent a crash (#9680404) occurred on the 

eastbound of I-96. Figure 2 shows the location of the crash on Google map, and verified it 

occurred on the eastbound approach. However, the direction was marked as ‘West’ in the raw 

data. Therefore, I manually corrected the direction to ‘East’ in the table and corrected the other 

rows with the similar errors.  

Figure 2 

Crash (#9680404) located on the eastbound of the freeway 
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Note. Figure 2 shows the location of a crash (#9680404) occurred on the eastbound of I-96 on 

Google map. However, the direction was marked as ‘West’ in the raw data and was corrected to 

‘East’ in the last two rows of Appendix 8.  

The crash data information is used as the target feature in the training model, to label 

whether a crash occurred at locations near one of the radar detectors. For this purpose, each crash 

location is assigned to its closest radar detector location. A python program was developed to 

calculate the distance between all crash locations and each of the detector locations and output 

the results to excel spreadsheet. Then I identified the crashes within 0.5 mile of each of the 

detector stations using the filter function in excel and add the columns for the closest radar 

detector to each crash, their distances to the radar detector, and the GPS coordinates of the radar 

directions, respectively. 

It can be observed from the Appendix 8 that there is more than one row for some of the 

crash IDs, each row representing an involved vehicle in the crash. For the modeling purpose, I do 

not need the vehicle information. Therefore, the python program deleted the columns for the 

vehicle information and removed the duplicate rows for the same crash IDs. After the cleanup, 

there are a total of 540 crashes from 2017 to 2019 along the study corridor. Appendix 9 illustrates 

an excerpt of the cleaned crash data. Figure 3 is a GIS map illustrating the crash locations along 

the radar detection stations on I-96. It can be seen from Figure 3 that all the selected crashes 

occurred in proximity to the seven crash locations.  
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Figure 3 

A GIS Map of Crashes and Radar Detection Stations  

 

Note. The GIS map shows the crash locations as red circle along the freeway, against the 7 radar 

detection stations as green pushpins, to verify all the crashes occurred on the I-96 freeway, and in 

proximity to the radar detection stations. 

Model Selection 

In this study, the target variable of the model is whether a crash will occur or not.  In 

another word, the target feature is a binary variable of 0 and 1, with 0 representing non-crash 

event and 1 representing crash event. Initially, three machine learning models, including decision 

tree model, random forest model (Kelleher, Namee & D’Arcy, 2015), and Dynamic Neural 

Network (DNN) model (Goodfellow, Bengio & Courville, 2016), were selected as the candidate 

model for analyzing the relationship between crash probability and its contributing factors, such 

as traffic volume and weather condition. These machine learning models can be used for binary 
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classification problems. In addition, random forest model can identify the feature importance for 

each input feature the model.  

 I also observed from the data processing that the number of crashes (i.e., 540 crashes) is 

only 2.3 percent of the number of the hours between Jan 2017 and Sep 2019 (23,760 hours). of 

the data comparing to the traffic data. Therefore, most of the target features would be zeros in the 

training data. With this consideration, support vector machine (SVM) model (Kelleher, Namee & 

D’Arcy, 2015) was also selected as for comparison, as it can better handle the data with 

unbalanced binary outputs (Kelleher, Namee & D’Arcy, 2015).   

Data Merging  

Each crash event was assigned to the nearest weather station and radar detection station 

listed in Appendix 1 and Appendix 6, depending on their geographical locations. In this way, I 

associated the crashes with local weather conditions and traffic flow conditions prior to, during 

and after the occurrence of crashes. These are the key steps before building up the models in 

python.  

As shown in the data description and processing section, Python and R were used as the 

major programming tools for the data processing, model development, model calibration and 

validation. The weather data, traffic volume data, and crash data are all time-series data.  

However, they have different time intervals. For example, traffic volume data are recorded at 2 

min intervals, while the weather data are usually in one-hour intervals. After all sources of data 

were collected and imported into Python, the data manipulation and analysis library in Python 

named Pandas (Tutorialspoint, 2006) was used to process, combine, and align different sources 

of data to the same time intervals.   
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After importing the different datasets mentioned above into python, I applied the data 

merging function ‘pandas.merge’ in python pandas to align traffic data, crash data, and weather 

data horizontally, so that they were combined to one big dataset for the modeling. The traffic data 

are aggregated in 2-minute intervals, while the weather data are collected every hour. Therefore, 

I merged weather data with traffic data by the time variables of year, month, day, hour, and by 

the assigned weather station. The merged traffic and weather data are the intermediate dataset. I 

then merged the crash data with the intermediate data to form the full dataset for the model 

training. The crash data are timestamped to the accuracy of a minute. The key variables I 

selected to merge the crash data and the intermediate data are year, month, day, hour, minute, and 

radar detector names, so that I can include all the traffic and weather data within same hour of 

the crash occurrence. I also randomly selected non-crash hours, i.e., hours with no crash 

occurrences, from the intermediate dataset and combine them with the dataset for crash hours  as 

the model training dataset. In this way, the model will learn the traffic and weather conditions for 

both crash and normal traffic situation.  

Model Evaluation 

After the model is built up and trained with the training dataset, a comparison between 

the four candidate models was performed using the testing dataset.  Statistical measures for 

binary classification model, such as confusion matrix, precision/ accuracy, sensitivity, specificity, 

and Cohen’s kappa (Sim & Wright, 2005), can be used to evaluate performance of the models. 
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Model Development 

Preliminary Data Analysis 

Crash Data Analysis. 

Table 1 lists the number of crashes for each year of the study period. It can be seemed 

that there are around 50% less crashes at the study corridor in 2015 comparing to 2016 and 2017.  

Table 1  

Number of Crashes by Year 

Year Number of Crashes 

2015 101 

2016 201 

2017 238 

Total 540 

Note. The table shows a breakdown of the number of crashes by year, and the total 

number crashes used for the model training and testing.  

A spatial-temporal analysis for the crash data was conducted and the results were 

illustrated in Appendix 10-Appendix 14. From the analysis, the winter months from October 

through January have higher number of crashes than the rest of the months. Within a month, the 

number of crashes has a pattern that peaks in around every 7 days. Within a day, the number of 

crashes has a morning peak between 7 AM and 10 AM and a afternoon peak between 4 PM and 7 

PM. There is not significant difference in the number of crashes between the traffic directions of 

eastbound and westbound. The breakdown of number of crashes by the seven radar detection 

stations shows that the stations R2, R4 and R6 have significantly higher number of crashes than 

R1, R3 R5, and R7.  
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Traffic Data Analysis. 

Figure 4 illustrates an example of crash impact on traffic speed, volume and occupancy at 

a radar detection station. From the crash data, the recorded crash occurrence time was at 6:37 

AM, however, the profiles of the speed, occupancy, and volume suddenly dropped to zero 

exactly at 6:34 AM. This indicates that the traffic flow stopped harshly due to the crash, and the 

impact of the crash hit the traffic flow at the radar station four minutes earlier than the recorded 

crash time. The example also shows that the dramatical variation in the traffic volume, speed and 

occupancy around 10 min prior to the crash occurrence is a precursor of a crash. This is 

consistent with the conclusions from Abdel-aty & Pemmanaboina (2006) that the traffic flow 

(i.e., speed, volume, and occupancy) 5 to 10 minutes prior to a crash occurrence has the most 

significant influence in predicting the crash events. Therefore, I decided to use both the average 

of and change in traffic flow (i.e., volume, speed, and occupancy) 10 minutes prior to the crash 

occurrence as the input features of the model. 
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Figure 4 

Traffic speed, occupancy, and volume profiles, before, during and after a crash occurrence 

(a) Speed and occupancy profile for a crash event on May 04, 2017, 6 AM  

 

(b) Volume profile for a crash event on May 04, 2017, 6 AM 
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Note. Table 4 (a) illustrates the traffic speed and occupancy profile, prior to, during and after a 

crash event on May 04, 2017, 6 AM. Table 4 (b) illustrates the traffic volume profile, prior to, 

during and after the same crash event.  The red oval in the plots highlights the dramatic variation 

in the profiles of the traffic speed, occupancy, and volume around 10 minutes prior to the crash 

occurrence. The variation of traffic flow in the 10-minute interval indicates a precursor for the 

crash occurrence.   

Input Features and Target Features 

Based on the spatial-temporal analysis of the crash events, the number of crashes has a 

pattern along month of year, day of month and time of day. Therefore, I include these three time 

related variables in the input features, so that the model can learn the seasonality trend of the 

crashes. There is no significant difference between the eastbound and westbound traffic 

directions, and the model is not calibrated for specific locations. Therefore, the traffic direction 

and the radar detection stations are not included in the input features.  

Based on the above analysis, I selected traffic volume, volume change, traffic speed, 

speed change, occupancy, occupancy change, 10 minutes prior to the crash occurrence as the 

traffic flow related input features for the model. Volume change, speed change and occupancy 

change are calculated as the difference between the current and the previous timesteps. Since the 

traffic data are measured in 2-minute intervals, the 10 minutes interval is equivalent to 5 

timesteps back from the time of the crash occurrence. In the crash data, the time stamp is 

recorded to the accuracy of one minute, while the traffic data are measured in 2-minute intervals. 

In addition, the crash location is within 0.5 mile distant to the radar detector location. Due to the 

temporal and spatial differences between the crash occurrence and the traffic data measure, I 

define the closest timestamp of traffic data prior to the crash timestamp as the timestep of the 
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crash occurrence  and keep the traffic data 5 timesteps prior to the crash occurrence timestep as 

traffic flow related input feature data.  

I also selected weather condition, temperature, and precipitation amount as the weather-

related input features. There are 14 types of weather conditions in the original weather data.  I 

categorized the weather conditions from the weather data into the two classes: good weather and 

bad weather. Thus, the weather condition feature in the models is a binary variable, where ‘0’ 

represents ‘good weather’ and ‘1’ represents ‘bad weather’. For example, snow and heavy rain 

were categorized to ‘bad weather’, and clear and cloudy weather were categorized to ‘good 

weather’. Appendix 15 lists the weather conditions from the original weather data, and their 

categories. It should be noted that the weather data were aggregated hourly, and therefore, were 

identical for the five timesteps prior to the crash occurrence.  

Table 2 lists the continuous input features and their summary statistics. It can be seen that 

the values of these input features are within reasonable ranges.  
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Table 2 

Summary table for the input features in the model 

(a) Summary statistics for the traffic related input features 

 n mean std min. 25% 50% 75% max. 

volume 

(vehicles/h) 
14076 2198.7 1590.5 0 860 1950 3330 6600 

volume change 

(vehicles/h) 
14076 465 623.4 0 120 270 570 6110 

occupancy 

(percent) 
14076 6.2 6.9 0 2 4.3 8 69.3 

occupancy change 

(percent) 
14076 1.6 3.2 0 0.3 0.7 1.7 67.3 

speed (mile/h) 14076 63.9 20.9 0 60 70.7 75.9 120 

speed change 

(mile/h) 
14076 6.7 13 0 1.1 2.9 6.1 120 

 

(b)  Summary statistics for the weather-related input features 

 n mean std min. 25% 50% 75% max. 

Temperature 

(Fahrenheit) 
14076 46.7 22 0.4 28.4 46.5 64.2 89.3 

Precipitation 

Accumulation 

(inches) 

14076 0 0 0 0 0 0 0.2 

Note. Table 2 lists input features for the training model and their summary statistics, including 

count of the data points (n), mean, standard deviation (std), minimum, maximum, 25 percentile, 

50 percentile (median) and 75 percentile of the data. It can be seen that the values of all features 

are within their reasonable ranges.  

Table 3 shows the correlation values between the input features. It can be seen that the 

correlation value between traffic volume and traffic occupancy is 0.55. This indicates moderate 

positive correlation between the traffic volume and the occupancy. This is reasonable, because 

higher traffic volume means more vehicles occupy the radar detector, and thus results in higher 
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occupancy rate. The rest pairs of the input features have correlations lower than 0.5, and 

indifferent correlation.  

 

Table 3 

Correlation Table for Input Features 

 
volume 

(vehicles/hour) 

occupancy 

(percent) 

speed 

(mile/hour) 

Temperature 

(Fahrenheit) 

Precipitation 

Amount 

(inch) 

volume 

(vehicles/hour) 

1.00 0.55 0.32 0.18 0.05 

occupancy 

(percent) 

0.55 1.00 0.24 0.14 0.04 

speed 

(mile/hour) 

0.32 0.24 1.00 0.00 0.00 

Temperature 

(Fahrenheit) 

0.18 0.14 0.00 1.00 0.11 

Precipitation 

Amount (inch) 

0.05 0.04 0.00 0.11 1.00 

Note. The table shows the correlation values between the major input features pairs. There are a 

total of five input features in the table.  

The target feature is a binary variable named ‘Crash Occurrence’ with two values ‘0’ and 

‘1’, where ‘1’ represents each crash event in the merged dataset, and ‘0’ represents no crash 

occurrence. I used python random number function to randomly select non-crash events out of 

the hours without crash events. To be consistent with crash events, I used the first ten minutes 

(i.e. five timesteps) of traffic flow data and the corresponding weather data in the non-crash 

hours randomly selected, and combined them with the crash related traffic data and weather data.  

 

Data Table Transformation 

Because the input features are time-series variables with 2-minute intervals, the original 

input feature data table is a tall table with 13,142 rows, Since I related each crash and non-crash 
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event to the 5 timesteps prior to their occurrence timestep, I used the ‘pivot_table’ function from 

python to reshape the tall table to a wide table, so that each crash or non-crash event and their 

related input feature data are in the same row. The transformed dataset table has a total of 1177 

rows, where 867 of them (i.e., 74%) are non-crash events and 310 of them (i.e., 26%) are crash 

events. 

Model Training and Parameter Tuning 

 To calibrate and validate the models, I used the sample split function from python to split 

the transformed dataset into 80% for training data and 20% for testing data, and make sure the 

portion of crash events in the training dataset is about the same as that in the testing dataset.  

SVM, Decision Tree and Random Forest Model. 

The functions from python sklearn library (Pedregosa et al., 2011) were used to build up 

the SVM, decision tree and random forest models. For the SVM model, three kernels, linear 

kernel, polynomial kernel, and radial basis function (RBF) kernel, were applied to the training 

and testing datasets, to find out which kernel fits the data best. For the random forest model, a 

built-in function named ‘feature_importance’ from python sklearn (Pedregosa et al., 2011) was 

used to evaluate the importance score of each input feature in the model. The evaluation metrics 

for model performance include confusion matrix, accuracy, precision, sensitivity (recall), and f1-

score.  

Dynamic Neural Network (DNN) Model. 

I used the ‘Sequential’ function from python tensorflow to build up the DNN models.  

Two hidden layers with 50 neurons in each layer were built initially. Then one more hidden layer 

was added to improve the complexity of the model and overcome the overfitting issue. Sigmoid 

function was used as the activation function. Binary-cross entropy function was used as the loss 
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function of the model. The optimizer of the model was ‘adam’. The evaluation metric for model 

training was accuracy, which is defined as the ratio of the correct predictions, including true 

positive (TP) and true negative (TN), to the total number of predictions.  

The hyperparameters include the number of hidden layers, number of neurons in the 

hidden layers, number of iteration epochs and batch size. I set the number of epochs to be 200, 

and batch size to be 50. Table 4 lists the hyper parameters of the DNN models.  

                        Table 4 

Hyper parameters of the DNN model 

Hyper Parameter Settings 

Number of hidden 

layers 
3 

Number of 

Neurons in the 

hidden layer 

50 

Epochs 200 

Batch Size 50 

 Note. The table lists the values of the hyperparameter used in the DNN 

model 

 

Model Results and Comparison 

SVM Model Results 

The confusion matrix of the SVM models can be viewed in Appendix 16. Table 5 shows 

the performance metrics of the SVM models with three types of kernels. They are calculated 

from the confusion matrix.  From Table 5, the model with RBF kernel has the highest model 

accuracy of 83%, followed by that with linear kernel with an accuracy of 82%. The model with 

polynomial kernel has the best sensitivity of 62%, which means the model can predict 62 percent 

of the crash events in the testing dataset. Although the F1 score of the model with the polynomial 
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kernel is 3% higher than that with the RBF kernel, its precision is 30% lower than that with the 

RBF model. Therefore, the SVM model with the RBF kernel has the best overall performance 

among the three kernels.  

Table 5 

Model Performance for the SVM models   

Model 

Model (Crash as Positive Case) 
Model 

Accuracy 
Precision 

Sensitivity 

(Recall) 
Specificity F1-score 

SVM 

(RBF Kernel) 
93% 43% 99% 59% 83% 

SVM 

(Linear Kernel) 
92% 37% 99% 52% 82% 

SVM 

(Polynomial Kernel) 
63% 62% 86% 62% 79% 

Note. These are the results of the model testing data. 

Decision Tree Model Results 

The confusion matrix of the Decision Tree can be viewed in Appendix 17. Table 7 lists 

the performance metrics for the decision tree model. It can be seen that the decision tree model 

has an overall accuracy of 87% and a sensitivity of 67%. The precision is 84%, which means out 

of all the predicted crash events 84% of them are actual crashes, and 16% are non-crashes. The 

specificity is 99%, which means it can predict 95% of the non-crash events correctly. The F1-

score is 74%, which shows that the model has a good balance between precision and sensitivity.  

Random Forest Model Results 

The confusion matrix of the random forest model can be viewed in Appendix 18. Table 7 

lists the performance metrics for the random forest model. It has an accuracy of 86%, and a 

sensitivity of 52%. The specificity is 99%, which means it can predict most of the non-crash 

events correctly. The F1-score is 67%, which indicates a good balance between precision and 

sensitivity.  
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 Table 6 lists the top 10 impacting factors for predicting the crash with the random forest 

model. It can be observed that weather is the top one factor, followed by time of day, 

temperature, and day of month. The other factors include the speed and speed change at the 

previous time step of crash occurrence (i.e., timestep 1), speed at the third timestep prior to the 

crash occurrence (i.e., speed_timestep3), speed at the last timestep prior to the crash occurrence 

(i.e., speed_timestep5), volume change at the last timestep prior to the crash occurrence (i.e., 

volume change_timestep5), and the occupancy at the previous timestep (i.e., 

occupancy_timestep1) 

   Table 6 

  Importance Score of the Top 10 Input Features 

Input Feature Importance 

Score 

Weather 0.06 

Time of Day 0.05 

Temperature 0.05 

Day of Month 0.04 

Speed_timestep1 0.04 

Speed change_timestep1 0.03 

speed_timestep3 0.03 

speed_timestep5 0.03 

volume change_timestep5 0.03 

occupancy_timestep1 0.03 

Note. The table lists the importance scores of the top 10 input features in 

descending order. 

 

DNN Model Results 

The confusion table of the DNN model can be viewed in Appendix 19 and Table 8 shows 

the performance metrics for the DNN model. It can be seen from Appendix 19 that no crash 

events were correctly predicted. Therefore, the sensitivity of the model was 0%, as shown in 
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Table 8. Although the specificity of the model was 100%, the models did not have the capability 

to predict the crash events, maybe due to the small portion of crash events comparing to the total 

events.  

The learning curve of the DNN model for model accuracy and loss through the 200 

iterations is plotted in Appendix 19. It can be observed that the accuracy curve of the testing data 

goes below that of the training data at the beginning of the iterations, and throughout the 

iterations. This indicates overfit of the model in the model training. The model was initially 

designed with two hidden layers, and I have added one more layer with 50 neurons to the DNN 

model after the initial model run. However, the model was still overfit due to insufficient sample 

size.  

Model Comparison 

 Table 7 shows a comparison of the testing results of the four models. It can be seen that 

all the models have high specificity, which means they are capable of predicting most of the non-

crash events. The decision tree and random forest models have higher accuracy and sensitivity 

than the SVM model, which means decision tree and random forest model can predict both crash 

and non-crash events better than the SVM model.  The decision model has the highest accuracy, 

as well as the sensitivity and F1-score, which means the model has the best overall performance 

among the four models.  

The DNN model has a 100% specificity, which means it predicted all the non-crash 

events. However, its sensitivity is zero, which indicates that it could not predict any of the crash 

events, and thus cannot be used for the prediction. 
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Table 7 

Comparison of Models Performance 

Model 

Model (Crash as Positive Case) 
Model 

Accuracy 
Precision 

Sensitivity 

(Recall) 
Specificity F1-score 

SVM 

(RBF Kernel) 
0.93 0.43 0.99 0.59 0.83 

Decision Tree 0.84 0.67 0.95 0.74 0.87 

Random Forest 0.94 0.52 0.99 0.67 0.86 

DNN 0.00 0.00 1.00 0.00 0.73 

Note. These are the results of the model testing data. 

 

Discussion and Future Work 

In this study, multiple data sources, including traffic data, weather data and crash data, 

were collected to analyze the impacting factors on crash occurrences. Spatiotemporal analysis on 

crashes was conducted for a highway corridor in Metro Detroit region for crash data. Crash data 

combined with geographical information, weather data, and traffic flow data were used to 

develop four types of machine learning models to predict whether a crash occurs at specific 

locations of the study corridor for the next two-minute interval. It was found that weather and 

traffic flow status around 10 minutes prior to the crash occurrence are precursor for the crash and 

can be used as input features in the crash prediction models. Overall, decision tree and random 

forest models perform better than SVM model and DNN model, with moderate sample size for 

model training. All four models were able to predict most of the non-crash events with a 

specificity of above 95%. However, the models could not predict crash events with high 

sensitivity. due to unbalanced crash and non-crash events in the target features. The decision tree 

model yields the highest sensitivity of 67% among the four models. From the importance scores 
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of the input features in the random forest model, weather condition (i.e., good or bad weather), 

time-related factors (e.g., time of day, day of month), and traffic flow related factors (e.g., traffic 

speed, speed change, volume and occupancy within 10 minutes prior to the crash occurrence) are 

the most important impacting factors of potential crashes. 

From the literature review, crash occurrence on highways could be related to external 

factors, including traffic speed, traffic volume, road condition, weather, as well as driver 

behavior factors, such as alcohol, age, and education. In this study, only several external factors 

are investigated. However, there may be hidden factors contributing to individual crashes that 

were not included in the models. For example, the crashes occurred between 10 pm and 3 am 

might be related more to impaired driving or low visibility, rather than speed drop or bad 

weather. This could have limited the model’s capability of identifying the potential crashes.  

For future studies, a more comprehensive model including more environmental factors, 

such as road surface condition, visibility, and speed limit, are of interest. In this study, average 

traffic data across the highway lanes were used. However, the slowdown on one lane might not 

be caught with the average traffic data. Therefore, lane-by-lane traffic data with higher resolution 

can be used to increase the sensitivity of the model. In the study, the data from one corridor was 

used to develop the models. More data from different corridors can be collected to increase the 

sample size, so that we can calibrate a more generalized model and validate the transferability 

models.  

With the fine-tuned prediction model, a prediction tool with interactive map could be 

developed. The tool can generate alerts for locations on a highway corridor with high probability 

of crashes for the next 2 to 5 minutes. Transportation agencies, first responders and state police 

patrol can use the tool to proactively monitor crash hot spots, and prepare staffing and resources 
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for the potential crash occurrences in advance. The information of risky areas can be 

disseminated to the public through dynamic message signs (DMS) on highways and social media 

like Twitter, especially during severe weather events, to provide situational awareness and 

advisory to the drivers.  

Acknowledgments   

The author would like to thank Michigan Department of Transportation (MDOT) for 

assisting with the data collection and sharing the data for this study. The contents of this paper 

reflect the views of the author, who is responsible for the facts and accuracy of the information 

presented herein and is not necessarily representative of the MDOT. 

 

  



TRAFFIC CRASH ANALYSIS                                                                                                   32 

 

References 

Abdel-aty, M. A., & Pemmanaboina, R. (2006). Calibrating a Real-Time Traffic Crash-Prediction 

Model Using Archived Weather and ITS Traffic Data. IEEE Transactions on Intelligent 

Transportation Systems, 7(2), 167–174. 

Anselin, L. (2010). Local Indicators of Spatial Association-LISA. Geographical Analysis, 27(2), 

93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x 

Al-Deek, H. M., Venkata, C., & Chandra, S. R. (2004). New Algorithms for Filtering and 

Imputation of Real-Time and Archived Dual-Loop Detector Data in I-4 Data Warehouse. 

Transportation Research Record: Journal of the Transportation Research Board, 1867(1), 

116–126. https://doi.org/10.3141/1867-14 

Aghajani, M. A., Dezfoulian, R. S., Arjroody, A. R., & Rezaei, M. (2017). Applying GIS to 

Identify the Spatial and Temporal Patterns of Road Accidents Using Spatial Statistics (case 

study: Ilam Province, Iran). Transportation Research Procedia, 25, 2126–2138. 

https://doi.org/10.1016/j.trpro.2017.05.409 

Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road 

accident hotspots. Accident Analysis and Prevention, 41, 359–364. 

https://doi.org/10.1016/j.aap.2008.12.014 

https://doi.org/10.1016/j.apgeog.2019.04.008 

Chung, W., Abdel-Aty, M., & Lee, J. (2018). Spatial analysis of the effective coverage of land-

based weather stations for traffic crashes. Applied Geography, 90, 17–27. 

https://doi.org/10.1016/J.APGEOG.2017.11.010 

Dark Sky Team. (2015). Dark Sky Weather Forecast. darksky. 



TRAFFIC CRASH ANALYSIS                                                                                                   33 

https://darksky.net/forecast/40.7127,-74.0059/us12/en 

Getis, A., & Ord, J. K. (2010). The Analysis of spatial association by use of distance statistics. 

Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-

4632.1992.tb00261.x 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press, Cambridge, 

Massachusetts. https://www.deeplearningbook.org/ 

Hakkert, A. S., & Mahalel, D. (1978). Estimating the number of accidents at intersections from a 

knowledge of the traffic flows on the approaches. Accident Analysis & Prevention, 10(1), 

69–79. https://doi.org/10.1016/0001-4575(78)90009-X 

Highway Capacity Manual (HCM) (2010). Transportation Research Board of the National 

Academies, Washington, D.C.. 

Jia, R., Khadka, A., & Kim, I. (2018). Traffic crash analysis with point-of-interest spatial 

clustering. Accident Analysis and Prevention, 121(September), 223–230. 

https://doi.org/10.1016/j.aap.2018.09.018 

Kelleher, D. J., Namee, M.B., & D’arcy A. (2015). Fundamentals of machine learning for 

predictive data analytics. MIT Press, Cambridge, Massachusetts. 

Lee, C., Saccomanno, F., & Hellinga, B. (2002). Analysis of crash precursors on 

instrumented freeways. Transportation Research Record, 1784, 1–8. 

Michigan State Police (MSP). (2021).  UD-10 Traffic Crash Report. michigan. 

https://www.michigan.gov/msp/0,4643,7-123-72297_24055_67691---,00.html 

Rolison, J. J., Regev, S., Moutari, S., & Feeney, A. (2018). What are the factors that contribute to 

road accidents? An assessment of law enforcement views, ordinary drivers’ opinions, and 

road accident records. Accident Analysis & Prevention, 115, 11–24. 

https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://www.deeplearningbook.org/
https://doi.org/10.1016/0001-4575(78)90009-X
https://doi.org/10.1016/j.aap.2018.09.018


TRAFFIC CRASH ANALYSIS                                                                                                   34 

https://doi.org/10.1016/J.AAP.2018.02.025 

Sim, J., & Wright, C. C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, 

and Sample Size Requirements. Physical Therapy, 85(3), 257–268. 

https://doi.org/10.1093/ptj/85.3.257 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. 

Journal of Machine Learning Research 12, 2825-2830.  

Tutorialspoint (2006). Python Pandas Tutorial. Retrieved August 5, 2019, from 

https://www.tutorialspoint.com/python_pandas/ 

Vaz, E., Techranchi, S., & Cusimano, M. (2017). Spatial assessment of road traffic injuries in the 

Greater Toronton Area (GTA): spatial analysis framework. Journal of Spatial and 

Organizational Dynamics, 5(1), 37–55. Retrieved from 

https://pdfs.semanticscholar.org/dab4/139c9d27cbf454765f084926fb7ac3b2886a.pdf 

World Health Organization. (2018). Road traffic injuries. who. https://www.who.int/en/news-

room/fact-sheets/detail/road-traffic-injuries 

 

  

https://doi.org/10.1093/ptj/85.3.257
https://www.who.int/en/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/en/news-room/fact-sheets/detail/road-traffic-injuries


TRAFFIC CRASH ANALYSIS                                                                                                   35 

Appendix 

Appendix 1 

Radar Detector Stations and Radar  

Detection Station Detector Name Highway Direction Cross Road 

D1 D1_1 I-96 East Kensington 

D1 D1_2 I-96 West Kensington 

D2 D2_1 I-96 East Kent Lake 

D2 D2_2 I-96 West Kent Lake 

D3 D3_1 I-96 East W of Milford 

D3 D3_2 I-96 West W of Milford 

D4 D4_1 I-96 East Milford 

D4 D4_2 I-96 West Milford 

D5 D5_1 I-96 East Old Plank 

D5 D5_2 I-96 West Old Plank 

D6 D6_1 I-96 East Wixom 

D6 D6_2 I-96 West Wixom 

D7 D7_1 I-96 East E of Beck 

D7 D7_2 I-96 West E of Beck 

Note. The table includes information on radar detector name, which direction of the traffic they 

measure, and the local crossroads of the detector location. The data comes from Michigan 

Department of Road. 
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Appendix 2  

An Excerpt of Traffic Data 

(a) Head of the Dataset 

Date and 

Time 

Detector Name volume 

(vehicles/hour) 

occupancy 

(percent) 

speed 

(mile/hour) 

12/1/2015 0:02 D-I96E MM1522 

Kensington 

600 1.00 60.00 

12/1/2015 0:04 D-I96E MM1522 

Kensington 

490 1.67 70.00 

12/1/2015 0:06 D-I96E MM1522 

Kensington 

460 2.33 51.11 

12/1/2015 0:08 D-I96E MM1522 

Kensington 

160 0.33 53.33 

12/1/2015 0:10 D-I96E MM1522 

Kensington 

510 1.67 51.00 

 

(b) Tail of the Dataset 

Date and Time Detector Name volume 

(vehicles/hour) 

occupancy 

(percent) 

speed 

(mile/hour) 

9/19/2017 

23:52 

D-I96W MM1611 E of Beck 1470 4.00 73.50 

9/19/2017 

23:54 

D-I96W MM1611 E of Beck 1280 3.67 71.11 

9/19/2017 

23:56 

D-I96W MM1611 E of Beck 2070 5.67 73.93 

9/19/2017 

23:58 

D-I96W MM1611 E of Beck 1560 4.33 74.29 

9/19/2017 

23:59 

D-I96W MM1611 E of Beck 2120 6.33 73.10 

Note. The excerpt shows the head and tail rows of the traffic flow data, including timestamps of 

measurements, detector name, volume in vehicles per hour (vph) for the approach, approach 

occupancy in percent, and approach speed in miles per hour. 
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Appendix 3 

Preliminary Summary Statistics of Traffic Data 

 n mean std min. 25% 50% 75% max. 

volume 

(vehicles/hour) 
7626659 2026 19999 0 650 1650 3150 55054560 

occupancy 

(percent) 
7607918 1245.33 8929.84 0 1.67 3.67 7.33 65535 

speed 
(mile/hour) 

7188111 70.46 11.3 1 
6607

% 

7214

% 

7714

% 
120 

Note. Summary statistics for the traffic data, including count of the data points (n), mean, 

standard deviation (std), minimum, maximum, 25 percentile, 50 percentile (median) and 75 

percentile of the data. 

 

Appendix 4  

Summary of Null Data 

  n mean std min. 25% 50% 75% max. 

volume 

(vehicles/hour) 

419807 0 0 0 0 0 0 0 

occupancy 

(percent) 

419807 0 0 0 0 0 0 0 

speed (mile/hour) 0 NaN NaN NaN NaN NaN NaN NaN 

Note. The table shows the number of null data (‘NAN’) in the speed data is 419,807. The 

corresponding occupancy and volume are zeros, which indicates that the null speeds should also 

be zero speeds.  
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Appendix 5 

Summary Statistics of Traffic Data with Outliers and Null Data Removed 

  n mean std min. 25% 50% 75% max. 

volume 

(vehicles/hour) 

7455198 2016 1589 0 650 1650 3140 7200 

occupancy 

(percent) 

7455198 4.96 4.99 0 1.67 3.33 7 74 

speed (mile/hour) 7455198 66.49 19.58 0 64.07 71.74 76.73 120 

Note. The summary statistics of the data show reasonable ranges after converting null data to 

zeros in the speed data.  

 

Appendix 6   

Weather Station  

Detection Station Weather Station Location 

D1 W1 South Lyon, MI 

D1 W1 South Lyon, MI 

D2 W2 Milford, MI 

D2 W2 Milford, MI 

D3 W2 Milford, MI 

D3 W2 Milford, MI 

D4 W2 Milford, MI 

D4 W2 Milford, MI 

D5 W3 New Hudson, MI 

D5 W3 New Hudson, MI 

D6 W4 Wixom, MI 

D6 W4 Wixom, MI 

D7 W5 Novi, MI 

D7 W5 Novi, MI 

Note. The table relates detection stations to their nearest weather stations, and the locations of the 

weather stations. There are a total of five weather stations, shown in the map in Figure 1.  
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Appendix 7 

Excerpt of Weather Data 

Time Temperature 

(Fahrenheit) 

Conditions Precipitation 

Probability  

Precipitation 

Accumulation 

(Inches) 

Wind 

(mile/hour) 

Weather 

Station 

1/1/2017 0:00 29.20 Mostly Cloudy 0 0 4.73 W4 

1/1/2017 1:00 27.93 Mostly Cloudy 0 0 3.00 W4 

1/1/2017 2:00 27.02 Partly Cloudy 0 0 1.73 W4 

1/1/2017 3:00 25.67 Clear 0 0 1.20 W4 

1/1/2017 4:00 24.00 Clear 0 0 1.11 W4 

Note. This is an excerpt of the weather data downloaded through the Darksky API, including 

timestamp, temperature (Fahrenheit), precipitation (Inches), weather conditions (e.g. clear, rain, 

snow, fog), and wind speeds etc 
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Appendix 8 

An Excerpt of Crash Data with Errors 

(a) 

Crash 

ID 

Date_time Latitud

e 

Longitud

e 

Primary 

Road 

Directio

n 

Intersecting 

Road 

960656

9 

1/18/2016 

22:20 

42.52 -83.66 I-96 West KENT LAKE 

960656

9 

1/18/2016 

22:20 

42.52 -83.66 I-96 West KENT LAKE 

960657

0 

1/18/2016 

23:25 

42.52 -83.66 I-96 West KENT LAKE 

962102

6 

2/9/2016 8:00 42.52 -83.66 I 96 West KENT LAKE 

962102

6 

2/9/2016 8:00 42.52 -83.66 I 96 West KENT LAKE 

964246

5 

3/5/2016 4:45 42.52 -83.66 I 96 West KENT LAKE 

964246

5 

3/5/2016 4:45 42.52 -83.66 I 96 West KENT LAKE 

965968

1 

3/5/2016 8:51 42.52 -83.66 I96 West KENT LAKE 

965968

1 

3/5/2016 8:51 42.52 -83.66 I96 West KENT LAKE 

968040

4 

4/21/2016 7:30 42.52 -83.66 E I 96 East RAMP 007A 

968040

4 

4/21/2016 7:30 42.52 -83.66 E I 96 East RAMP 007A 
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(b) 

Crash 

ID 

Fatalitie

s 

Injurie

s 

Crash Type Weathe

r 

Light 

Condition 

Road 

Condition 

960656

9 

0 0 Sideswipe-Same Snow Dark-

Unlighted 

Snow 

960656

9 

0 0 Sideswipe-Same Snow Dark-

Unlighted 

Snow 

960657

0 

0 0 Single Motor 

Vehicle 

Snow Dark-Lighted Snow 

962102

6 

0 0 Sideswipe-Same Snow Daylight Snow 

962102

6 

0 0 Sideswipe-Same Snow Daylight Snow 

964246

5 

0 0 Sideswipe-Same Snow Dark-

Unlighted 

Snow 

964246

5 

0 0 Sideswipe-Same Snow Dark-

Unlighted 

Snow 

965968

1 

0 1 Head On Snow Daylight Snow 

965968

1 

0 1 Head On Snow Daylight Snow 

968040

4 

0 0 Sideswipe-Same Rain Daylight Wet 

968040

4 

0 0 Sideswipe-Same Rain Daylight Wet 
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(c) 

Crash 

ID 

Number of Vehicles 

Involved 

Involved 

Vehicle 

Vehicle Type Vehicle Year Vehicle Make 

9606569 2 1 Motor 

Vehicle 

2003 SATURN 

9606569 2 2 Motor 

Vehicle 

2013 FORD 

9606570 1 1 Motor 

Vehicle 

2006 FORD 

9621026 2 1 Motor 

Vehicle 

2013 CHEVROLET 

9621026 2 2 Motor 

Vehicle 

2010 TOYOTA 

9642465 2 1 Motor 

Vehicle 

2008 CHEVROLET 

9642465 2 2 Motor 

Vehicle 

2011 IHC 

9659681 2 1 Motor 

Vehicle 

2008 CHEVROLET 

9659681 2 2 Motor 

Vehicle 

2015 FRHT 

9680404 2 1 Motor 

Vehicle 

2015 FORD 

9680404 2 2 Motor 

Vehicle 

2015 JEEP 

Note. The table is an excerpt of the crash data, including crash ID, timestamp of crash, GPS 

coordinates of crash locations, direction of the traffic where the crash occurred, information of 

the vehicles involved etc. 
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Appendix 9 

Cleaned Crash Data 

Crash ID Time Latitude Longitude Primary 

Road 

Direction Intersecting 

Road 

9606569 1/18/2016 22:20 42.52 -83.66 I-96 West KENT 

LAKE 

9606570 1/18/2016 23:25 42.52 -83.66 I-96 West KENT 

LAKE 

9621026 2/9/2016 8:00 42.52 -83.66 I 96 West KENT 

LAKE 

9642465 3/5/2016 4:45 42.52 -83.66 I 96 West KENT 

LAKE 

9659681 3/5/2016 8:51 42.52 -83.66 I96 West KENT 

LAKE 

9680404 4/21/2016 7:30 42.52 -83.66 E I 96 West RAMP  

Note. The table shows an excerpt of the traffic data, after cleaning up the direction information of 

the crashes, and removing unnecessary information columns, such as county and city of the crash 

locations.  
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Appendix 10 

Number of Crashes by Month 

Note. The table shows the number of crashes broken down by month of year. It can be seen that 

the months from October through January have higher number of crashes than the rest of months.  
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Appendix 11 

Number of Crashes by Day of Month 

 

Note. The table shows the number of crashes broken down by day of month. It can be seen that 

the number of crashes has a pattern that peaks in around every 7 days.  

 

 

 

 

 

 

 

 

 

19
18

14

22

25

17

15

13

22

26

21

15

24

16

11
12

25

19

16
17

20

12

18

20

11

23

13 13

19

11

13

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

N
u

n
m

b
er

 o
f 

C
ra

sh
es

Day of Month



TRAFFIC CRASH ANALYSIS                                                                                                   46 

 

Appendix 12 

Number of Crashes by Time of Day 

 

Note. The table shows the number of crashes broken down by time of day. It can be seen that the 

number of crashes has a morning peak between 7 AM and 10 AM, and a afternoon peak between 

4 PM and 7 PM.  
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Appendix 13 

Number of Crashes by Traffic Direction 

 

Note. The table shows the number of crashes broken down by two traffic directions: Eastbound 

and Westbound on the highway. It can be seen that the number of crashes are close between the 

two traffic directions.  
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Appendix 14 

Number of Crashes by Radar Detection Station 

 

Note. The table shows the number of crashes broken down by radar detection stations. It can be 

seen that the station of R2, R4 and R6 have significantly higher number of crashes than the 

stations of R1, R3 R5, and R7.  
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Appendix 15 

Weather Conditions Category 

 Weather Category 

 Good Weather (0) Bad Weather (1) 

Weather Conditions 

 

Overcast Rain 

Partly Cloudy Fog 

Clear Blowing Snow 

Possible Drizzle Snow 

Mostly Cloudy Sleet / Hail 

Humid and Mostly 

Cloudy 

 

Possible Light Rain 
 

Cloudy 
 

Note. The weather conditions are classified into two categories: good weather and bad 

weather. 

 

Appendix 16 

Confusion Matrix of the SVM Models 

(a) Linear Kernel 

  
        Actual   

0(noncrash) 1(crash) 

Prediction 
0(noncrash) 164 2 

1(crash) 40 23 

 

(b) RBF Kernel 

  
        Actual   

0(noncrash) 1(crash) 

Prediction 
0(noncrash) 164 2 

1(crash) 36 27 
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(c) Linear Kernel 

  
        Actual   

0(noncrash) 1(crash) 

Prediction 
0(noncrash) 143 23 

1(crash) 24 39 

Note. These are the results of model testing data. 

Appendix 17 

Confusion Matrix of the Decision Model 

  
        Actual   

0(noncrash) 1(crash) 

Prediction 
0(noncrash) 158 8 

1(crash) 21 42 

Note. These are the results of model testing data. 

 

Appendix 18 

Confusion Matrix of the Random Forest Model 

  
        Actual   

0(noncrash) 1(crash) 

Prediction 
0(noncrash) 164 2 

1(crash) 30 33 

Note. These are the results of model testing data. 

 

Appendix 19 

Confusion Matrix of the DNN Model 

  
        Actual   

0(noncrash) 1(crash) 

Prediction 
0(noncrash) 166 0 

1(crash) 63 0 

Note. These are the results of model testing data. 
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Appendix 20 

 Learning Curve of DNN model 

(a) Model Accuracy for 200 Iterations 
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(b) Model Loss for 200 Iterations 

 

Note. The gaps between training and testing data accuracy and loss indicate 

overfit of the model 
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