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Abstract  

Speech delay is a childhood language problem that sometimes 

is resolved on its own but sometimes may cause more serious 

language difficulties later. This leads therapists to screen 

children for detection at early ages in order to eliminate future 

problems.   Using the Goldman-Fristoe Test of Articulation 

(GFTA) method, therapists listen to a child’s pronunciation of 

certain phonemes and phoneme pairs in specified words and 

judge the child’s stage of speech development. The goal of this 

paper is to develop an Automatic Speech Recognition (ASR) 

tool and related speech processing methods which emulate the 

knowledge of speech therapists. In this paper two methods of 

feature extraction (MFCC and DCTC) were used as the baseline 

for training an HMM-based utterance verification system which 

was later used for testing the utterances of 63 young children 

(ages 4-10),  both typically developed and speech delayed. The 

ASR results show the value of augmenting static spectral 

information with spectral trajectory information for better 

prediction of therapist’s judgments.  

Index Terms: speech therapy, utterance verification, speech 

delay  

1. Introduction  

Early identification of speech disorders in children is helpful in 

providing the treatment they need to help mitigate speech and 

language difficulties [1]. Detecting disorders early can be 

challenging because the responsibility falls on the 

parents/caregivers to detect signs of delayed speech 

development and schedule evaluation by a Speech Language 

Pathologist (SLP) to diagnose possible speech/language delays 

[2]. While there is no substitute for a face-to-face evaluation by 

a well-trained SLP, a screening tool with good sensitivity and 

specificity would be a valuable adjunct to clinical evaluations, 

possibly reducing the number of unnecessary evaluations while 

helping parents identify cases where a clinical evaluation is 

strongly indicated. Automating the identification process would 

not only help parents recognize potential problems of their 

children, it would also free up time for speech language 

pathologists to focus on the treatment rather than testing.  

Much research has been conducted for diagnosing speech 

disorders for children. As an example, in [3] a general method 

of evaluation of children with speech delay is provided. In [4] 

and [5] the effect of cochlear development on speech delay is 

discussed. In [6] and [7] some current methods for screening 

children with speech delay are reviewed. Since pediatric 

procedures are not the aim of this paper, these methods are not 

discussed in any depth in this paper.  

In previous work from another lab an automated approach 

to measuring speech intelligibility known as the Children’s 

Speech Intelligibility Measure (CSIM) was developed using 

ASR technology to verify children’s utterances, yielding an 

overall speech intelligibility score that closely matched scores 

based on human evaluation of the CSIM [8]. In another work 

deaf children’s ability to perceive sounds was assessed by 

recognizing how accurately the children were able to repeat 

what was spoken to them [9]. The ASR results were compared 

to three human testers’ assessments and it was found that in 93% 

of the cases where there was consensus among the human 

testers, the ASR system matched the humans’ response. 

However, that paper was mainly concerned with adapting 

models designed for older children to models for younger 

children.  In this paper, we seek to improve ASR technology 

more directly for the speech of young children.    

In this paper we focus on utterance verification techniques 

to stimuli recorded from administration of the GoldmanFristoe 

[10] Test of Articulation (GFTA), which is another diagnostic 

tool used to evaluate speech development in children. The 

GFTA tool is used to evaluate a child’s ability to pronounce 

consonants and consonant clusters by having them speak both 

individual words and words in sentences.  The children attempt 

to say particular GFTA words, for which they may or may have 

problems with target sounds embedded in the words. The SLP 

judges the quality of pronunciation of these targets sounds to 

pinpoint specific problems the child may have. The number of 

errors in pronunciation and the age of the child are used in 

determining if the child’s speech development is age-typical. In 

this study, an ASR system is used to recognize a child’s speech 

and identify the individual phones that were spoken to see if the 

target phonetic segment was accurately pronounced and 

matched a human judge’s evaluation. The challenge for the ASR 

system is to determine whether these targets are correct or 

incorrect, without training examples for incorrect sounds.   

Considerable effort, summarized below was spent to 

improve/modify ASR for this task, beginning with phone-level 

Hidden Markov models (HMMs) using Mel-frequency cepstral 

coefficients (MFCCs and ∆ and ∆∆). Alternative features called 

DCTCs and DCSCs ([11, 12, and 13]), adaptation, and N-best 

scoring [14] were also tested.  Only modest improvements were 

obtained for any of the ASR recognizer methods. Therefore, a 

modified method is proposed, whereby ASR methods are used 

only to identify the center point of a target sound within a carrier 

word, and another measure, based on Mahalanobis distance to 

the centroid of a cluster of correctly produced sounds, is used as 

the measure of “goodness” of a production.   

 This paper is organized as follows: In section 2 the method 

which is used for training the HMM for both methods of feature 

extraction is described and a brief discussion on obtained results 

is provided. In section 3, a modified ASR method is described. 

Copyright © 2015 ISCA September 6-10, 2015, Dresden, Germany 
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The conclusion of the paper is given in section 4.  The primary 

goal of this work is to mimic therapist judgments using ASR.  

2. ASR Approach  

Initially a standard baseline ASR using monophone Hidden 

Markov models (HMMs) was trained with speech recorded 

from normally articulating children. These phoneme models 

were subsequently used to recognize speech obtained during the 

GFTA testing process.  

2.1. Training Data  

Training data was speech from normally articulating school 

children between the ages of 6 and 8. These data contained 

recordings from 207 children with each child having spoken 100 

individual words selected from a dictionary of about 7,000 

words. After screening, a total of 18,531 utterances of good 

quality were used.  

2.2. Testing Data  

Data from the GFTA diagnostic test administered to children 

with and without speech disorders was used to evaluate ASR 

performance. The children were between the ages of 5 and 9 

years - about half of them (33) were diagnosed with speech 

delay, while the rest (32) were siblings who may or may not 

have had speech delay. Each child spoke 53 words from the 

GFTA sounds-in-words test. A total of 4995 utterances were 

available for testing. Listener judgments of the target sounds 

were collected for all utterances. The target sounds are 

consonants that occur either in the initial, medial or final 

location in a word. In all there were 39 target sounds of which 

23 were isolated phone segments and the rest were clusters of 2 

phones (like BR in “brush” or CL in “clown”).  All but 4 of the 

isolated segments had all three locations represented, while the 

clusters occurred only in the initial segments. Some of the words 

contained more than one target sound; for example, the word 

“ball” had the initial /b/ and the final /l/ as target sounds. The 

listener judgments were used only to evaluate if the target sound 

was correctly articulated or not. The test data was recorded 

under a different set of conditions for a different project than the 

training set; however they were recorded from children in 

approximately the same age range as for the training set.  

2.3. Training and Testing Methodology  

To train the phone level HMM models the Baum-Welch 

expectation-maximization algorithm was used and testing was 

done using the Viterbi algorithm. 3-state monophone HMM 

models with 32 Gaussian mixtures were used. These algorithms 

as implemented by HTK [15] were employed for training and 

testing the phonetic models. In one set of experiments, 13 

MFCC features along with delta and acceleration features--a 

total of 39 features--were extracted using 25ms Hamming 

window segments of speech updated every 5ms. As alternative 

features, Discrete Cosine Transformation Coefficients (DCTCs) 

features were extracted, and their temporal trajectories encoded 

with Discrete Cosine Series Coefficients (DCSCs) [10].  13 

DCTCs, each represented by 5 DCSCs were used, so the total 

number of features was 65 (13x5) for this case.  The same 

training set of data was used for both MFCC features and 

DCTC/DCSC features. The number of Gaussian mixtures was 

originally set to 1 and gradually increased to 32.  Only 32 

mixture results are reported.  

    The testing process of the ASR was modified to simulate a 

standard GFTA evaluation process where the word that was 

spoken by the child is known and a speech pathologist listens 

for miss-pronunciations of only the target segments within that 

word. For e.g., if the GFTA word is “vacuum,” where the initial 

/v/ is the target segment, and if the child pronounced that 

segment as a /v/ then it would be a considered correct 

articulation- even if some other part of the word was 

misspronounced.   

To simulate a similar testing procedure for the automated 

process, the ASR system is “informed” of the word and it 

focuses recognizes only on the target segment. For example, for 

the case of “vacuum” ( /v/ /ae/ /k/  /j/ /u/ /m/), the ASR systems 

selects the phone that best matches the initial segment given that 

the rest of the word is force aligned to match /ae/ /k/ /j/ /u/ /m/. 

The ASR phone result is sorted into two categories, “correct,” 

or anything else, and then compared to that of a human listener’s 

assessment to evaluate how similar ASR results are to human 

judgments. The results reported in the next section compare the 

ASR score to the human score on a per utterance level and on a 

per speaker level. Figure 1 illustrates the method of recognition 

and scoring.  

  

Figure 1: An overview of scoring for the automated GFTA 

evaluation process.  

2.4. Baseline Results  

Preliminary experiments with MFCCs were conducted to test 

how effective the standard ASR models and training procedures 

are for the task of automating the GFTA testing process. This 

experiment was conducted as described above.  The phone 

recognized by the ASR at the location of the target segment is 

determined to be either correct or incorrect, and then compared 

to the human binary judgment of the target segment 

“correctness.” It was found that the ASR score matched the 

human score in 3198 utterances out of 4994 giving an accuracy 

of 64.0%.  Additionally, the sensitivity or true positive rate (rate 

at which the miss-pronunciations are recognized as a non-target 

sound by the ASR) and specificity or true negative rate (the rate 

at which correct pronunciations by the child are recognized as 

the target sound by the ASR) [16] were examined.   

As the alternative approach, using DCTC/DCSC features 

accuracy improves by about 1% to 65.1%. The comparison 

between the two methods shows slightly better results are 

obtained using DCTC/DCSC features.   However, as we argue 

later, as a screening tool, sensitivity is more important than 

overall accuracy, and for sensitivity, the DCTC/DCSC features 

are substantially higher than for the MFCC features (90.3% 

versus 87.8%).   Therefore, all remaining results are based on 

DCTC/DCSC features.  

2.5. N-Best results  

The error patterns summarized above are highly asymmetric.  

The ASR system is much more likely to score a correctly 

produced utterance as incorrect rather than vice versa.  Using an 

N-best scoring approach, it would be expected that overall 

accuracy would improve,  i.e., that fewer correct tokens would 

erroneously be scored as incorrect,  but that more incorrect 

tokens would be scored as correct.  Different values of N were 

considered, and as shown in Table 1, as N increases the 

recognition accuracy increases. However, as the N-best scoring 

increases the chances of detecting the target phone, the 
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sensitivity drops.   Large drops in sensitivity are not desirable 

for a screening tool.  

Table 1. Specificity, sensitivity, and recognition accuracy for 

various numbers of top choices considered by ASR.   

N  
Specificity 

(%)    

Sensitivity 

(%)  

Recognition  

Accuracy (%) 

1  59.8  90.3  65.1  

2  75.7  80.9  76.6  

5  86.9  61.7  82.6  

10  93.2  52.0  86.1  

  

These results are also illustrated in Figure 2. As shown, by 

increasing the N in N-best, accuracy and specificity increase 

while sensitivity decreases. To achieve a balance among these 

measures, N should increase only to the extent that sensitivity 

remains high enough that the overall tool is useful for screening.  

Ideally all children with a problem should be referred to the SLP 

for further evaluation.   If non-problem children are referred to 

the SLP, they will eventually be found to be normally speaking.  

As long as at least a substantial number of normally speaking 

children are screened out, the SLP load will be reduced.  Based 

on this logic, N=2 appears to be the largest practical value that 

should be used for N-best scoring in the ASR tool.    

 

Figure 2- Sensitivity, specificity, and accuracy as a function of 

N in the N-best method.  

 

Figure 3- The accuracy of each target using N=2 best choices  

 

Figure 4- Recognition accuracy based on child age  

The recognition accuracy varies depending on the amount of 

available training data. Figure 3 depicts the accuracy for the 5 

best and 5 worst targets using N=2 best choices. As shown the 

accuracy for /h/ is 98% while for /d/ accuracy drops to 35%.   

Accuracy is also plotted as a function of children’s age in Figure 

4.  Accuracy is lowest for the youngest children tested (about 

75% for children of age 4) and increases with age to near 87% 

(N=2) for 12 year old children. Presumably, younger children 

have more variability in pronunciation.  

2.6. Discussion  

Summarizing briefly, despite consideration of many variations 

of the basic ASR approach, none of the approaches resulted in 

substantial improvements in both sensitivity and accuracy.  

Using DCTC/DCSC features,  rather than more typical MFC 

features, give a very small increase in accuracy (~1%)  and a 

slightly larger increase in sensitivity (~3%),  neither of which 

are considered adequate.   Using N-best scoring with a high N 

greatly improves accuracy,   but at the expense of reducing the 

more important sensitivity measure.   Several other variations 

were investigated, including Vocal Tract Length Normalization 

(VTLN) [17] and Maximum A Posterior (MAP) [18] adaption, 

none of which improved sensitivity or accuracy by more than 

1%.     

One strong possibility for the poor performance of the ASR 

method for use as a screening tool is that there is simply not 

nearly enough training data or test data.  For example, even the 

training data, with 20000 utterances, contains on average about 

100 examples of each target phones, all of them correctly 

pronounced. In contrast, for example, the TIMIT database, used 

frequently in the ASR community for ASR research focusing on 

phonetic recognition,   has about 180 examples on average for 

each phone.    For the children’s speech case, even more data 

should be used than for studies using adult speech, since 

children are developing and presumably have much more 

natural variability than do adults, especially the young children 

(4 to 7 years old) of most interest for possible need of speech 

therapy.     

The lack of sufficient speech data is even more acute for test 

data.   For example for the case of /r/ there are only 38 poorly 

produced examples.   For the consonant cluster /g/+/r/ there are 

only 31 samples.   On average the test database has 30 “bad” 

examples, and 70 “good” examples, per phoneme.  Also, for any 

ASR study involving parameter and method tuning,   the test 

data should be separated into an evaluation set, for tuning 

experiments, and a final test set, to be used only once.    

In an initial attempt to improve both accuracy and 

sensitivity, HMM log likelihoods for “correct” targets were 

compared to a threshold to judge whether the “correct” target 

was good enough.   However, this method was abandoned as it 

simply did not perform well.  

    Given our hypothesis that much more data is needed for the 

straight ASR approach for the development of a screening tool 

(possibly by more than 1 order of magnitude),  and the low 

likelihood that such a data base could be obtained from children 

in the foreseeable future,  a new approach  to creating an 

automatic screening tool is proposed in  the next section.      

3. Modified ASR Approach  

Unlike the situation for a general purpose ASR system, the big 

advantage for the proposed automated screening system is that 

the system has pre-knowledge of the word produced and the 

particular phoneme in the word that may be incorrectly 

pronounced.  Thus, the required automatic task is presumably 

much easier than for the general ASR case.   That is, the apriori 
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information is very high for the present task. This type of 

observation has been made before [19].  

To be more specific, the ASR system, in the same form as 

described previously, is used now only to locate the center point 

of the target phone.   That is,   phoneme models are trained for 

each phoneme in the training database, and forced alignment is 

used to best align the produced word with its phonetic 

transcription.    Features are then extracted from that section of 

the located target phoneme, using the center point of the 

phoneme boundaries. The features used are a set of 

DCTC/DCSC features (13 DCTCs, 3 DCSCs, or 39 total 

features), using a block length long enough to capture most of 

the spectral-temporal information for the target phoneme 

(typically on the order of 150ms).   Note that the features used 

to characterize the phoneme as a single feature vector could be 

different than the frame-based features used for the HMM 

recognizer system.    

Using the same training and test data as mentioned 

previously, the mean (μ) and variance ( Σ ) of the training 

features are computed, for each possible target phoneme.  For 

testing, the feature vector for the target block segment is 

computed. Suppose the features are defined as , , … , . The 

Mahalonobis distance from the specified target phoneme is 

computed as:  

  D(x) = (x−μ)TΣ−1(x−μ)  (1)  

If this distance is small, the conclusion is that the phoneme was 

properly pronounced.  If the distance is large, presumably the 

production was improper.  The separation between small and 

large is with respect to a unique threshold, which can be defined 

for each target and tuned for best accuracy and sensitivity.   

Figure 5 is a block diagram of the method.  

Figure 6 shows the result of using this method for a block length 

of 150ms.   Note that, in principle, the block length, feature set, 

and threshold could be different for each target phoneme.  

For very low thresholds, the sensitivity is very high, but the 

accuracy and specificity are low.  The accuracy can be improved 

by increasing the threshold, but again, as for the ASR only 

method, sensitivity is reduced.  Presumably the overall results 

could be improved by tuning the Mahalanobis distance classifier 

for each phoneme individually, and further work on computing 

the features uniquely for each phoneme.    

  

Figure 5- Block diagram of the modified ASR approach as a  

speech delay screening tool  

  

 

Figure 6- The accuracy, sensitivity and specificity, using the 

modified ASR approach  

4. Discussion and Conclusion  

ASR verification for utterance disorder of young children (ages 

4 to 10) was described in this paper. The original work showed 

that the ASR system matches human listener responses in 65.1% 

of cases, using DCTC/DCSC features. Increasing the number of 

choices in the HMM increased the accuracy to ~86% but at the 

expense of reduced sensitivity. To make the results reasonable 

one approach is to define a threshold for minimum acceptable 

sensitivity and increase the number of choices up to that point.    

The results reported here imply that features which 

emphasize temporal trajectories (i.e., DCTCs/DCSCs) are 

slightly more effective than MFCCs with delta terms for 

detecting pronunciation problems of young children with speech 

delays.   

ASR for children, especially considering a large range of ages, 

and children with production problems, with a relatively small 

amount of training data, is difficult.   Since the goal of this work 

is screening, that is to identify nearly all children with a speech 

delay problem and identifying a portion of the children with no 

problems, rather than exact phoneme recognition, some other 

machine learning procedures can be used to exploit the apriori 

knowledge. Experimental data show that by using a 

“correctness” indicator implemented via Mahalanobis distance 

to a correct production, sensitivity can be very high, but with 

low overall accuracy. Conversely, changing a simple threshold 

can increase accuracy to at least 90%, but with greatly reduced 

sensitivity.    
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